

XBR-000212-PRO

Brocade® XBR-000212 Compatible TAA Compliant 32GBase-SW Fibre Channel SFP+ Transceiver (MMF, 850nm, 100m, DOM, 0 to 70C, LC)

Features

- SFF-8432 and SFF-8472 Compliance
- Compliant with IEEE 802.3ae
- Duplex LC Connector
- Up to 28.05Gbps bi-directional data links
- VCSEL transmitter and PIN receiver
- Multi-mode Fiber
- 3.3V power supply and 1W power dissipation
- Built-in digital diagnostic functions
- Metal with lower EMI
- Support Hot Pluggable
- Excellent ESD protection
- RoHS compliant and Lead Free

Applications:

- 32GBase Fibre Channel
- Access and Enterprise

Product Description

This Brocade® XBR-000212 compatible SFP+ transceiver provides 32GBase-SW Fibre Channel throughput up to 100m over multi-mode fiber (MMF) using a wavelength of 850nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Brocade® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Maximum Supply Voltage	Vcc	0	3.6	V
Storage Temperature	TS	-40	85	°C
Operating Case Temperature	Тс	0	70	°C
Operating Humidity	RH	5	85	%
Receiver Power	R _{MAX}		-1	dBm
Maximum Bitrate	B _{max}	8.5	28.05	Gbps

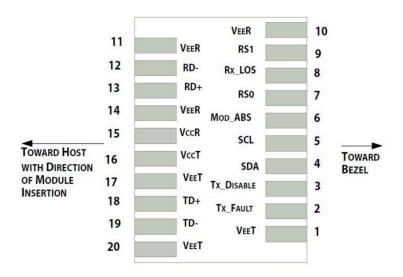
Electrical Characteristics (TOP=25°C, Vcc=3.3Volts)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage		Vcc	3.13	3.30	3.47	V	
Power Supply Current		Icc			300	mA	
Power Consumption		P _{DISS}			1	W	
Transmitter							
Differential data input swing	28.05Gbps	Vin,pp	50		900	mV	
	14.025Gbps & 8.5Gbps	Vin,pp	180		700	mV	
Input differential impedance		Zin	90	100	110	Ω	
Receiver							
Differential data output swing Vo		Vout, pp	300		850	mV	
Output differential impedance		Zin	90	100	110	Ω	

Optical Characteristics

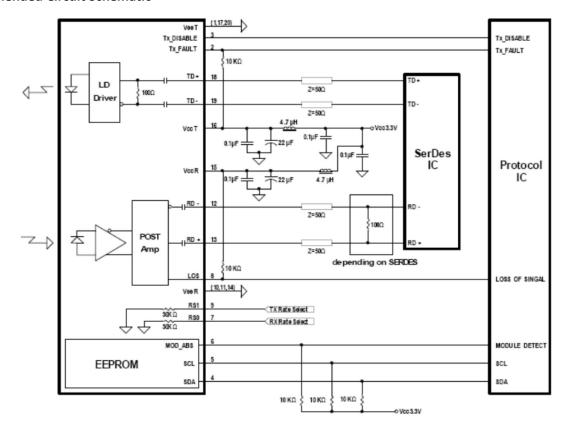
Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter							
	28.05Gbps	P _{AVE}	-6.7			dBm	1
Optical Power (average)	14.025Gbps	P _{AVE}	-7.8			dBm	1
	8.5Gbps	P _{AVE}	-6.7			dBm	1
	28.05Gbps	P _{OMA}	-3.2			dBm	2
Optical Modulation amplitude (OMA)	14.025Gbps	P _{OMA}	-4.8			dBm	2
,	8.5Gbps	P _{OMA}	-5.2			dBm	2
Optical Extinction Ratio		ER	2			dB	
Optical Wavelength		Τλ	840	850	860	nm	
Insertion loss		IL		2			
Receiver							
Receiver Sensitivity (average)		R _{AVE}			-13	dBm	3
	28.05Gbps	R _{OMA}			-10.2	dBm	2
Receiver Sensitivity (OMA)	14.025Gbps	R _{OMA}			-10.5	dBm	2
	8.5Gbps	R _{OMA}			-11.2	dBm	2
Receiver overload		P _{max}	-1			dBm	4
Receiver wavelength		Rλ	840		860	nm	

Notes:

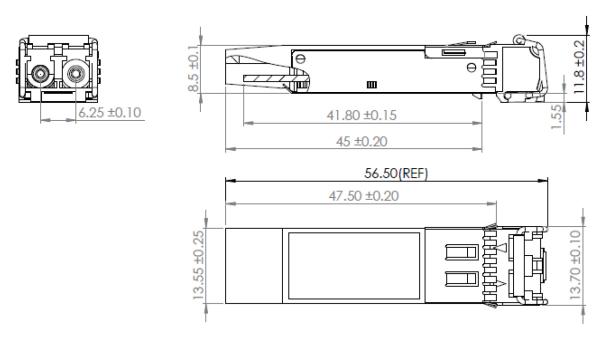

- 1. Coupled into a Multi-mode fibre
- 2. Per IEEE 802.3ae specification
- 3. Average power, back-to-back, @10.31Gbps, BER 1E-12, PRBS 231-1.
- 4. Exceeding the Receiver overload can physically damage the module. Please use appropriate attenuation.

Pin Descriptions

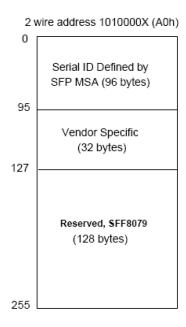
Pin	Symbol	Name/Descriptions	Ref.
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	TX Fault	Transmitter Fault. LVTTL-O	2
3	TX Disable	Transmitter Disable. Laser output disabled on high or open. LVTT-I.	3
4	SDA	2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I/O.	
5	SCL	2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I.	
6	MOD_ABS	Module Absent, Connect to VeeT or VeeR in Module.	4
7	RS0	Rate Select 0. Not used	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation. LVTTL-O.	2
9	RS1	Rate Select 1. Not used	5
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted DATA out. AC Coupled. CML-O.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled. CML-O.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled. CML-I.	
19	TD-	Transmitter Inverted DATA in. AC Coupled. CML-O.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1

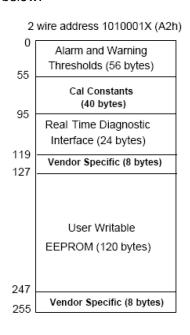

Notes:

- 1. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
- 2. This contact is an open collector/drain output and should be pulled up to the Vcc_Host with resister in the range $4.7K\Omega$ to $10K\Omega$. Pull ups can be connected to one or several power supplies, however the host board design shall ensure that no module contract has voltage exceeding module VccT/R +0.5.V.
- 3. Tx_Disable is an input contact with a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccT inside module.
- 4. Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull the contract up to Vcc_Host with a resistor in the range from $4.7K\Omega$ to $10K\Omega$. Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.
- 5. Internally pulled down per SFF-8431


Pin-out of connector Block on Host board

Recommended Circuit Schematic


Mechanical Specifications


Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

EEPROM Information

EEPROM memory map specific data field description is as below:

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223

Email: sales@prolineoptions.com

Email: techsupport@prolineoptions.com Web: https://www.prolineoptions.com