WG8583-PRO
WatchGuard ${ }^{\circledR}$ WG8583 Compatible TAA Compliant 10GBase-SR SFP+ Transceiver (MMF, 850nm, 300m, DOM, 0 to 70C, LC)

Features

- SFF-8432 and SFF-8472 Compliance
- VCSEL transmitter and PIN receiver
- Duplex LC Connector
- Commercial Temperature 0 to 70 Celsius
- Multi-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications:

- 10GBase-SR Ethernet
- $8 x / 10 x$ Fibre Channel
- Access, Datacenter and Enterprise
- Mobile Fronthaul CPRI/OBSAI

Product Description

This WatchGuard ${ }^{\circledR}$ WG8583 compatible SFP+ transceiver provides 10GBase-SR throughput up to 300m over multi-mode fiber (MMF) using a wavelength of 850 nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent WatchGuard ${ }^{\circledR}$ transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. \& 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. - made or designated country end products.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5	4.0	V
Storage Temperature	TS	-40	85	${ }^{\circ} \mathrm{C}$
Operating Case Temperature	Tc	0	70	${ }^{\circ} \mathrm{C}$
Operating Humidity	RH	5	85	$\%$
Receiver Power	$\mathrm{R}_{\text {MAx }}$		-1	dBm
Maximum Bitrate	$\mathrm{B}_{\max }$		11.3	Gbps

Electrical Characteristics ($\mathrm{TOP}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{Volts}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.15	3.30	3.43	V	
Power Supply Current	Icc			303	mA	
Power Consumption	P DISS			1	W	
Transmitter						
Differential data input swing	Vin,pp	120		850	mV	
Input differential impedance	Zin	80	100	120	Ω	
Receiver						
Differential data output swing	Vout, pp	300		850	mV	
Output differential impedance	Zin	80	100	120	Ω	

Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Optical Power (average)	$\mathrm{P}_{\text {AVE }}$	-7.3		-1.2	dBm	1
Optical Modulation amplitude (OMA)	PомA	-1.5			dBm	2
Optical Extinction Ratio	ER	3			dB	
Optical Wavelength	T λ	840	850	860	nm	
Insertion loss	IL		2			
Receiver						
Receiver Sensitivity (average)	$\mathrm{R}_{\text {ave }}$			-9.9	dBm	3
Receiver Sensitivity (OMA)	Roma			-11.1		2
Receiver overload	$\mathrm{P}_{\text {max }}$	-1			dBm	4
Receiver wavelength	$\mathrm{R} \lambda$	840		860	nm	

Notes:

1. Coupled into a Multi-mode fibre
2. Per IEEE 802.3ae specification
3. Average power, back-to-back, @10.31Gbps, BER 1E-12, PRBS 231-1.
4. Exceeding the Receiver overload can physically damage the module. Please use appropriate attenuation.

Pin Descriptions

Pin	Symbol	Name/Descriptions	Ref.
$\mathbf{1}$	VeeT	Transmitter Ground (Common with Receiver Ground).	$\mathbf{1}$
$\mathbf{2}$	TX Fault	Transmitter Fault. LVTTL-O	2
$\mathbf{3}$	TX Disable	Transmitter Disable. Laser output disabled on high or open. LVTT-I.	3
$\mathbf{4}$	SDA	2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL- l/O.	
$\mathbf{5}$	SCL	2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I.	
$\mathbf{6}$	MOD_ABS	Module Absent, Connect to VeeT or VeeR in Module.	$\mathbf{4}$
$\mathbf{7}$	RSO	Rate Select 0. Not used	$\mathbf{5}$
$\mathbf{8}$	LOS	Loss of Signal indication. Logic O indicates normal operation. LVTTL-O.	$\mathbf{2}$
$\mathbf{9}$	RS1	Rate Select 1. Not used	$\mathbf{5}$
$\mathbf{1 0}$	VeeR	Receiver Ground (Common with Transmitter Ground).	$\mathbf{1}$
$\mathbf{1 1}$	VeeR	Receiver Inverted DATA out. AC Coupled. CML-O.	$\mathbf{1}$
$\mathbf{1 2}$	RD-	Receiver Non-inverted DATA out. AC Coupled. CML-O.	
$\mathbf{1 3}$	RD+	Receiver Ground (Common with Transmitter Ground).	
$\mathbf{1 4}$	VeeR	Receiver Power Supply.	$\mathbf{1}$
$\mathbf{1 5}$	VccR	Transmitter Power Supply.	$\mathbf{1}$
$\mathbf{1 6}$	VccT	Transmitter Ground (Common with Receiver Ground).	
$\mathbf{1 7}$	VeeT	Transmitter Non-Inverted DATA in. AC Coupled. CML-I.	
$\mathbf{1 8}$	TD+	Transmitter Inverted DATA in. AC Coupled. CML-O.	
$\mathbf{1 9}$	TD-	VeeT	Transmitter Ground (Common with Receiver Ground).

Notes:

1. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
2. This contact is an open collector/drain output and should be pulled up to the Vcc_Host with resister in the range $4.7 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$. Pull ups can be connected to one or several power supplies, however the host board design shall ensure that no module contract has voltage exceeding module VccT/R +0.5.V.
3. Tx_Disable is an input contact with a $4.7 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$ pull-up resistor to VccT inside module.
4. Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull the contract up to Vcc_Host with a resistor in the range from $4.7 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$. Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.
5. Internally pulled down per SFF-8431

Pin-out of connector Block on Host board

Recommended Circuit Schematic

Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP MultiSourcing Agreement (MSA).

EEPROM Information

EEPROM memory map specific data field description is as below:

2 wire address 1010001X (A2h	
55	Alarm and Warning Thresholds (56 bytes)
95	Cal Constants (40 bytes)
	Real Time Diagnostic Interface (24 bytes)
119	Vendor Specific (8 bytes)
247	User Writable EEPROM (120 bytes)
	Vendor Specific (8 bytes)

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223
Email: sales@prolineoptions.com
Email: techsupport@prolineoptions.com
Web: https://www.prolineoptions.com

