

#### SFPDD-50GB-PDAC2M-PRO

MSA and TAA 50GBase-CU SFP-DD to SFP-DD Direct Attach Cable (Passive Twinax, 2m, 30AWG)

#### **Features**

- SFP-DD module compliant to SFP-DD MSA Rev. 2.1Is
- SFP-DD-MIS Rev. 2.0
- Compliant to IEEE802.3cd & IEEE802.3bj high-frequency test standards
- 30AWG
- Passive twinax
- 50Gbps transmission
- Operating Temperature 0 to 70 Celsius
- Built-in EEPROM functions
- RoHS compliant and lead-free



### **Applications:**

• 50GBase Ethernet

### **Product Description**

This is a MSA Compliant 50GBase-CU SFP-DD to SFP-DD direct attach cable that operates over passive copper with a maximum reach of 2m. It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. We stand behind the quality of our products and proudly offer a limited lifetime warranty. This cable is TAA (Trade Agreements Act) compliant and is built to comply with MSA (Multi-Source Agreement) standards.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.



# **Absolute Maximum Ratings**

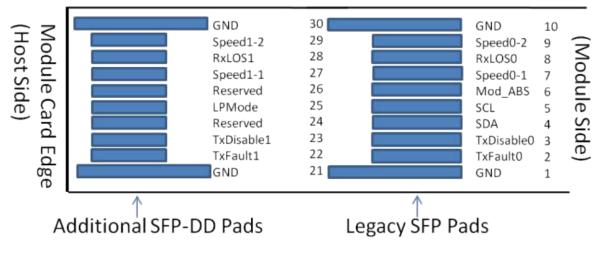
| Parameter                  | Symbol | Min. | Тур. | Max. | Unit |
|----------------------------|--------|------|------|------|------|
| Supply Voltage             | Vcc    | 3.13 | 3.3  | 3.47 | V    |
| Storage Temperature        | Tstg   | -40  |      | 85   | °C   |
| Operating Case Temperature | Тс     | 0    |      | 70   | °C   |
| Humidity                   | RH     | 5    |      | 85   | %    |
| Data Rate (FDR10)          |        |      | 50   |      | Gbps |

## **Physical Characteristics**

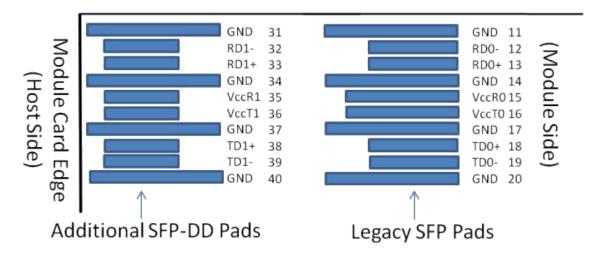
| Parameter       | Symbol    | Min. | Тур. | Max. | Unit |
|-----------------|-----------|------|------|------|------|
| Length          | L         |      |      | 2    | m    |
| AWG             |           |      |      | 30   | AWG  |
| Jacket Material | Black PVC |      |      |      |      |
| Flame Rating    | VW-1      |      |      |      |      |

# **Electrical Specifications**

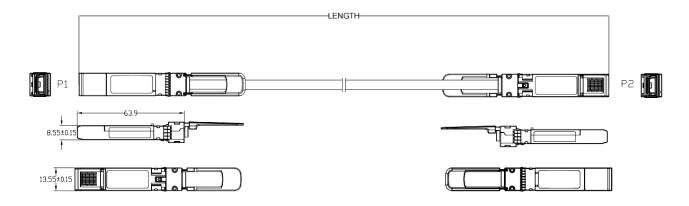
| Parameter                                      | Symbol      | Min.                                                                                                    | Тур.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max.                                | Unit |
|------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------|
| Resistance                                     | Rcon        |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                   | Ω    |
| Insulation Resistance                          | Rins        |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                  | ΜΩ   |
| Raw Cable Impedance                            | Zca         | 95                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                 | Ω    |
| Mated Connector Impedance                      | Zmated      | 85                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110                                 | Ω    |
| Maximum Insertion Loss at 13.28GHz             | SDD21       | 8                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.16                               | dB   |
| Differential to Common-Mode<br>Return Loss     | SCD11/22    | Return_loss(f) $\ge $ $\begin{cases} 22 - (\frac{20}{25.78})f, \\ 15 - (\frac{6}{25.78})f, \end{cases}$ | 0.01 ≤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\leq f < 12.89$ $9 \leq f \leq 19$ | dB   |
| Differential to Common-Mode<br>Conversion Loss | SCD21-SDD21 | Conversion_loss $\begin{cases} 10, \\ 27 - \left(\frac{29}{22}\right) f, \\ 6.3, \end{cases}$           | $S(f) - IL(f) \ge 0.01 \le f < 12.89 \le f$ $15.7 \le 0.01 \le f < 15.7 \le 0.01 \le 0.01 \le 0.01 \le f < 15.7 \le 0.01 \le$ | < 12.89<br>< 15.7<br><i>f</i> ≤ 19  | dB   |
| Minimum COM                                    | СОМ         | 3                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | dB   |
| Rise Time (20-80%)                             |             |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                  | ps   |


## **Pin Descriptions**

|     | -          |             |                                                       | -                |       |
|-----|------------|-------------|-------------------------------------------------------|------------------|-------|
| Pin | Logic      | Symbol      | Name/Description                                      | Plug<br>Sequence | Notes |
| 1   |            | GND         | Module Ground.                                        | 1A               | 1     |
| 2   | LVTTL-O    | Tx_Fault0   | Transmitter Fault Indication for Channel 0.           | 3A               |       |
| 3   | LVTTL-I    | Tx_Disable0 | Transmitter Disable for Channel 0.                    | 3A               |       |
| 4   | LVCMOS-I/O | SDA         | Management I/F Data.                                  | 3A               |       |
| 5   | LVCMOS-I/O | SCL         | Management I/F Clock.                                 | 3A               |       |
| 6   | LVTTL-O    | MOD_ABS     | Module Absent.                                        | 3A               |       |
| 7   | LVTTL-I    | Speed0-1    | Rx Rate Select for Channel 0.                         | 3A               |       |
| 8   | LVTTL-O    | RxLOS0      | Rx Loss of Signal for Channel 0.                      | 3A               |       |
| 9   | LVTTL-I    | Speed0-2    | Tx Rate Select for Channel 0.                         | 3A               |       |
| 10  |            | GND         | Module Ground.                                        | 1A               | 1     |
| 11  |            | GND         | Module Ground.                                        | 1A               | 1     |
| 12  | CML-O      | RD0-        | Inverse Received Data Out for Channel 0.              | 3A               |       |
| 13  | CML-O      | RD0+        | Received Data Out for Channel 0.                      | 3A               |       |
| 14  |            | GND         | Module Ground.                                        | 1A               | 1     |
| 15  |            | VccR0       | Receiver Power.                                       | 2A               | 2     |
| 16  |            | VccT0       | Transmitter Power.                                    | 2A               | 2     |
| 17  |            | GND         | Module Ground.                                        | 1A               | 1     |
| 18  | CML-I      | TD0+        | Transmit Data In for Channel 0.                       | 3A               |       |
| 19  | CML-I      | TD0-        | Inverse Transmit Data In for Channel 0.               | 3A               |       |
| 20  |            | GND         | Module Ground.                                        | 1A               | 1     |
| 21  |            | GND         | Module Ground.                                        | 1B               | 1     |
| 22  | LVTTL-O    | Tx_Fault1   | Transmitter Fault Indication/Interrupt for Channel 1. | 3B               |       |
| 23  | LVTTL-I    | Tx_Disable1 | Transmitter Disable for Channel 1.                    | 3B               |       |
| 24  |            | Reserved    | Reserved for Future Use.                              | 3B               |       |
| 25  | LVTTL-I    | LPMode      | Low-Power Mode Control.                               | 3B               |       |
| 26  |            | Reserved    | Reserved for Future Use.                              | 3B               |       |
| 27  | LVTTL-I    | Speed1-1    | Rx Rate Select for Channel 1.                         | 3B               |       |
| 28  | LVTTL-O    | RxLOS1      | Loss of Signal for Channel 1.                         | 3B               |       |
| 29  | LVTTL-I    | Speed1-2    | Tx Rate Select for Channel 1.                         | 3B               |       |
| 30  |            | GND         | Module Ground.                                        | 1B               | 1     |
| 31  |            | GND         | Module Ground.                                        | 1B               | 1     |
| 32  | CML-O      | RD1-        | Inverse Received Data Out for Channel 1.              | 3B               |       |
| 33  | CML-O      | RD1+        | Received Data Out for Channel 1.                      | 3B               |       |
| 34  |            | GND         | Module Ground.                                        | 1B               | 1     |
| 35  |            | VccR1       | Receiver Power for Channel 1.                         | 2B               | 2     |
| 36  |            | VccT1       | Transmitter Power for Channel 1.                      | 2B               | 2     |
| 37  |            | GND         | Module Ground.                                        | 1B               | 1     |
| 38  | CML-I      | TD1+        | Transmit Data In for Channel 1.                       | 3B               |       |
| 39  | CML-I      | TD1-        | Inverse Transmit Data In for Channel 1.               | 3B               |       |
| 40  |            | GND         | Module Ground.                                        | 1B               | 1     |


#### Notes:

- 1. GND is the symbol for signal and supply (power) common for the module. All are common within the module, and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccT0, VccT1, VccR0, and VccR1 are applied concurrently and may be internally connected within the module in any combination.


### **Electrical Pin-Out Details**



Bottom side as viewed from top thru board



## **Mechanical Specifications**



## **Notes:**

- 1. 4 pairs, black PVC jacket, and RoHS 2.0 compliant.
- 2. 100% conductor test conditions: voltage of 5V, insulation resistance of  $10M\Omega$ , and a conduction resistance of maximum  $3\Omega$ .
- 3. High-frequency test according to IEEE802.3bj & IEEE802.3cd standards.

### **About Us:**

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.



Tel: 855.933.3223

Email: sales@prolineoptions.com

Email: techsupport@prolineoptions.com Web: https://www.prolineoptions.com