

SFP-50GBASE-LR-I-PRO

MSA and TAA Compliant 50GBase-LR SFP56 Transceiver (SMF, 1310nm, 10km, DOM, -40 to 85C, LC)

Features

- SFF-8431 and SFF-8472 Compliance
- Up to 53Gb/s bi-directional data links
- SFP56 package with duplex LC connector
- Cooled 1310 EML Transmitter
- PIN Receiver
- Single-mode Fiber
- Single +3.3V power supply
- Build-in DSP
- 2.5W maximum power consumption
- Class 1 laser safety certified
- Industrial Temperature -40 to 85 Celsius
- RoHS Compliant

Applications:

- 50GBase Ethernet
- Access and Enterprise

Product Description

This MSA Compliant SFP56 transceiver provides 50GBase-LR throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.

Rev. 031924

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5		4.0	V
Storage Temperature	TS	-40		85	°C
Operating Case Temperature	Тс	-40	25	85	°C
Relative Humidity	RH	5		95	%
Data Rate			53.13		Gbps

Electrical Characteristics (TOP=25°C, Vcc=3.3Volts)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage		Vcc	3.135	3.3	3.465	V	
Module Supply Current		lcc			760	mA	
Power Dissipation		P _D			2500	mW	
Transmitter							
Differential data input swing		Vin, p-p			900	mVp-p	
Input differential impedance		Zin	90	100	110	Ω	
TX_FAULT	Transmitter Fault	VOH	2.0		VCCHOST	V	
	Normal Operation	VOL	0		0.8	V	
TX_DISABLE	Transmitter Disable	VIH	2.0		VCCHOST	V	
	Transmitter Enable	VIL	0		0.8	V	
Receiver		1					
Differential data output swing		Vout, p-p			900	mVp-p	1
Output differential impedance		Zo	90	100	110	Ω	
Data Output Rise Time, Fall Time		t _r , t _f	9.5			ps	2
RX_LOS	Loss of signal (LOS)	Voh	2.0		VCCHOST	V	3
	Normal Operation	VOL	0		0.8	V	3

Notes:

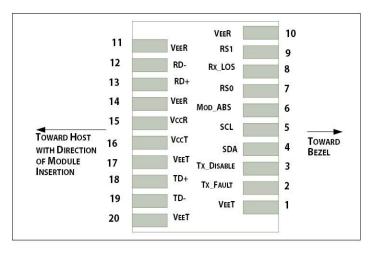
1. Internally AC coupled, but requires an external 100Ω differential load termination.

- 2. 20 80 %.
- 3. LOS is an open collector output. Should be pulled up with $4.7k\Omega$ on the host board.

Optical Characteristics

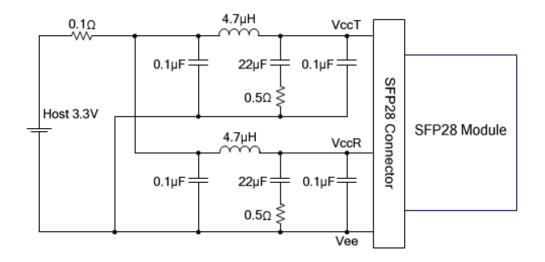
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Launch Optical Power (average)	P _{AV}	-4.5		+4.2	dBm	1
Launch Optical Power (OMA)	Po	-1.5		+4	dBm	1
TDECQ (50G PAM4)	TDECQ			3.2	dB	
Extinction Ratio	ER	3.5			dB	
Center Wavelength Range	λc	1304.5		1317.5	nm	
Spectral Width	Δλ			1	nm	2
Side Mode suppression Ratio	SMSR	35			dB	
Optical Return Loss Tolerance	ORLT			15.1	dB	
Pout @TX-Disable Asserted	Poff			-30	dBm	
Receiver						
Receiver Sensitivity (average)	R _{AV}			-10.8	dBm	3
Receiver Sensitivity (OMA)	R _{OMA}			-7.7	dBm	3
Receiver Overload	Pav	+4.2			dBm	
Optical Wavelength Range	λc	1260		1340	nm	
Receiver Reflectance				-26	dB	
LOS De-Assert	LOS _D			-12	dBm	
LOS Assert	LOS _A	-20			dBm	
LOS Hysteresis		0.5			dB	

Notes:

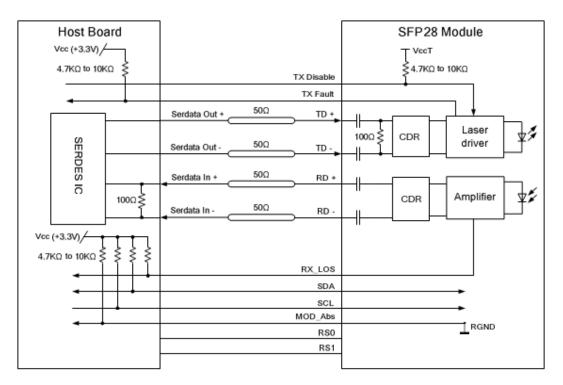

- 1. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations.
- 2. 20dB spectral width.
- 3. Measured with PRBS 2^{31} -1 at 2.4×10⁻⁴ BER.

Pin Descriptions

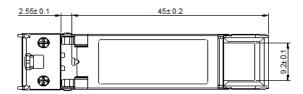
Pin	Symbol	Name/Descriptions	Notes
1	VeeT	Transmitter Ground	1
2	TX_Fault	Transmitter Fault (LVTTL-O) - High indicates a fault condition	2
3	TX_Disable	Transmitter Disable (LVTTL-I) – High or open disables the transmitter	3
4	SDA	Two wire serial interface Data Line (LVCMOS-I/O) (MOD-DEF2)	4
5	SCL	Two wire serial interface Clock Line (LVCMOS-I/O) (MOD-DEF1)	4
6	MOD_ABS	Module Absent (Output), connected to VeeT or VeeR in the module	5
7	RSO	NA	6
8	RX_LOS	Receiver Loss of Signal (LVTTL-O)	2
9	RS1	NA	6
10	VeeR	Receiver Ground	1
11	VeeR	Receiver Ground	1
12	RD-	Inverse Received Data out (CML-O)	
13	RD+	Received Data out (CML-O)	
14	VeeR	Receiver Ground	
15	VccR	Receiver Power - +3.3V	
16	VccT	Transmitter Power - +3.3 V	
17	VeeT	Transmitter Ground	1
18	TD+	Transmitter Data In (CML-I)	
19	TD-	Inverse Transmitter Data In (CML-I)	
20	VeeT	Transmitter Ground	1

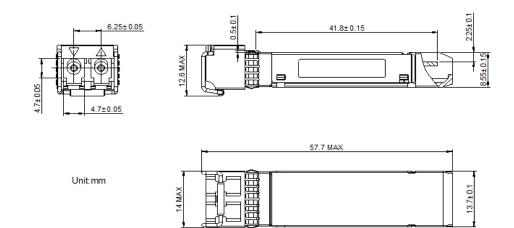

Notes:

- 1. The module signal grounds are isolated from the module case.
- 2. This is an open collector/drain output that on the host board requires a 4.7K Ω to 10K Ω pull-up resistor to Vcc-Host.
- 3. This input is internally biased high with a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccT.
- 4. Two-Wire Serial interface clock and data lines require an external pull-up resistor.
- 5. This is a ground return that on the host board requires a 4.7KΩ to 10KΩ pull-up resistor to Vcc-Host.
- 6. Rate select not available



Host PCB SFP28 Pad Assignment Top View


Recommended Host Board Power Supply Filter Network



Recommended Application Interface Block Diagram

Mechanical Specifications

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223 Email: sales@prolineoptions.com Email: techsupport@prolineoptions.com Web: https://www.prolineoptions.com