

SFP-10GB-PDAC1-5M-I-C-PRO

Cisco® Compatible TAA 10GBase-CU SFP+ to SFP+ Direct Attach Cable (Passive Twinax, 1.5m, -40 to 85C)

Features

- Compliant to SFF-8431/8432 and INF-8074
- Up to 10.3125Gbps
- 1.5m length
- Passive copper
- Built-in EEPROM function
- 30AWG Wire Gauge
- Single 3.3V power supply
- Industrial Temperature: -40C to 85C
- Metal with lower EMI
- RoHS Compliant and Lead-Free

Applications

- 10G Ethernet
- 10G Fiber Channel
- Datacenters and Mobile Networks

Product Description

This is a Cisco® compatible 10GBase-CU SFP+ to SFP+ direct attach cable that operates over passive copper with a maximum reach of 1.5m. It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. This direct attach cable is TAA (Trade Agreements Act) compliant, and is built to comply with MSA (Multi-Source Agreement) standards. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline Options' direct attach cables are RoHS compliant and lead free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883 Method 3015.
- ESD to the Duplex LC Receptacle: compatible with IEC 61000-4-2.
- Immunity: compatible with IEC 61000-4-3.
- EMI: compatible with FCC Part 15 Class B EN55022 Class B (CISPR 22B) VCCI Class B.
- Laser Eye Safety: compatible with FDA 21CFR 1040.10 and 1040.11 EN60950, EN (IEC) 60825-1, 2.
- RoHS: compliant with 2002/95/EC 4.1&4.2 2005/747/EC.

General Specifications

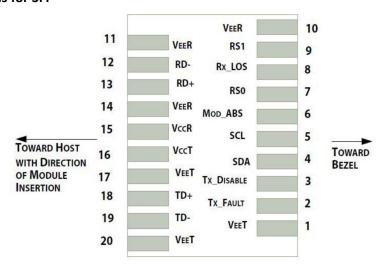
Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc	3.13	3.3	3.47	V
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	-40		85	°C
Humidity	RH	5		85	%
Data Rate			10		Gbps

Cable Specifications

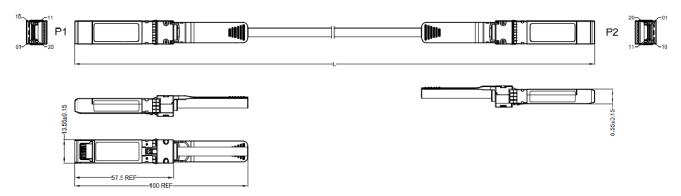
Parameter	Symbol	Min.	Тур.	Max.	Unit
Length	L			1.5	M
AWG		30			AWG
Jacket Material	PVC, Black (Or Customization)				

Electrical Specifications

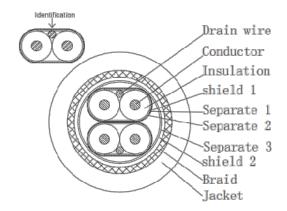
Parameter	Symbol	Min.	Тур.	Max.	Unit
Resistance	Rcon			3	Ω
Insulation Resistance	Rins			10	ΜΩ
Raw Cable Impedance	Zca	95	100	110	Ω
Mated Connector Impedance	Zmated	85	100	110	Ω
Insertion Loss at 5.16GHz	SDD21			17.04	dB
Return Loss	SDD11/22	Return_loss(f)≥	$\begin{cases} 12-2\sqrt{f} & 0 \\ 6.3-13\log_{10}(f/5.5) \end{cases}$	0.05≤f < 4.1 5) 4.1≤f≤10	dB


Pin Descriptions

Pin	Logic	Symbol	Power Sequence Order	Name/Description	Note
1		VeeT	1 st	Module Transmitter Ground.	3
2	LVTTL-O	Tx_Fault	3 rd	Module Transmitter Fault.	4
3	LVTTL-I	Tx_Disable	3 rd	Transmitter Disable. Turns off the transmitter laser output.	5
4	LVTTL-I/O	SDA	3 rd	2-Wire Serial Interface Data (Same as MOD_DEF2 in INF-8074i).	
5	LVTTL-I/O	SCL	3 rd	2-Wire Serial Interface Clock (Same as MOD_DEF1 in INF-8074i).	
6		MOD_ABS	3 rd	Module Absent. Connected to VeeT or VeeR in the module.	
7	LVTTL-I	RS0	3 rd	Rate Select 0. Optionally controls the SFP+ module receiver.	
8	LVTTL-O	Rx_LOS	3 rd	Receiver Loss of Signal Indication. In FC, designated as Rx_LOS. In Ethernet, designated as Signal Detect.	4
9	LVTTL-I	RS1	3 rd	Rate Select 1. Optionally controls the SFP+ module transmitter.	
10		VeeR	1 st	Module Receiver Ground.	3
11		VeeR	1 st	Module Receiver Ground.	3
12	CML-O	RD-	3 rd	Receiver Inverted Data Output.	
13	CML-O	RD+	3 rd	Receiver Non-Inverted Data Output.	
14		VeeR	1 st	Module Receiver Ground.	3
15		VccR	2 nd	+3.3V Module Receiver Supply.	
16		VccT	2 nd	+3.3V Module Transmitter Supply.	
17		VeeT	1 st	Module Transmitter Ground.	3
18	CML-I	TD+	3 rd	Transmitter Non-Inverted Data Input.	
19	CML-I	TD-	3 rd	Transmitter Inverted Data Input.	
20		VeeT	1 st	Module Transmitter Ground.	3


Notes:

- 1. Labeling as inputs (I) and outputs (O) are from the perspective of the module.
- 2. The case makes electrical contact with the cage before any of the board edge contacts are made.
- 3. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
- 4. This contact is an open collector/drain output contact and shall be pulled up on the host board. Pull-ups can be connected to one of several power supplies; however, the host board design shall ensure that no module contact has a voltage exceeding the module VccT/R+0.5V.
- 5. Tx_Disable is an input contact with a $4.7k\Omega$ to $10k\Omega$ pull-up to the VccT inside the module.


Electrical Pin-Out Details for SFP

Mechanical Specifications

Cable Cross Section

About Us:

Proline Options is one of North America's leading providers of transceivers and high-speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223

Email: sales@prolineoptions.com

Email: techsupport@prolineoptions.com
Web: https://www.prolineoptions.com

www.prolineoptions.com Rev: 1222 5