

QSFP28-100GB-ZR4-I-PRO

MSA and TAA Compliant 100GBase-ZR4 QSFP28 Transceiver (SMF, 1295nm to 1309nm, 80km, DOM, -40 to 85C, LC)

Features

- QSFP28 MSA Compliant
- 4 LAN-WDM Lanes MUX/DEMUX Design
- Supports 103.125Gbps Aggregate Bit Rate
- EML Laser and PIN+SOA Receiver
- Single 3.3V Power Supply
- 4x25G Electrical Interface
- Duplex LC Connector
- Maximum Power Consumption of 6.5W
- Single-Mode Fiber
- Industrial Temperature: -40 to 85 Celsius
- Hot Pluggable
- RoHS Compliant and Lead-Free

Applications:

- 100GBase Ethernet
- Access and Enterprise

Product Description

This MSA Compliant QSFP28 transceiver provides 100GBase-ZR4 throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1295nm to 1309nm via an LC connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.

Rev. 021424

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	0	3.6	V	
Storage Temperature	Tstg	-40	85	°C	
Operating Case Temperature	Тс	-40	85	°C	1
Operating Humidity	RH	0	85	%	

Notes:

1. Industrial temperature range.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes			
Power Supply Voltage	Vcc	3.13	3.30	3.47	V				
Power Dissipation				6.5	W				
Transmitter	Transmitter								
Data Rate Per Lane			25.78125		Gbps				
Differential Voltage Pk-Pk	Vpp			900	mV	1			
Common-Mode Voltage	Vcm	-350		2850	mV				
Transition Time	Tr/Tf	10			ps	2			
Differential Termination Resistance Mismatch				10	%				
Eye Width	EW15	0.46			UI				
Eye Height	EH15	95			mV				
Receiver									
Data Rate Per Lane			25.78125		Gbps				
Differential Termination Resistance Mismatch				10	%	1			
Differential Output Voltage Swing	VOUT,pp			900	mV				
Common-Mode Noise (RMS)	Vrms			17.5	mV				
Transition Time	Tr/Tf	12			ps	2			
Eye Width	EW15	0.57			UI				
Eye Height	EH15	228			mV				

Notes:

1. At 1MHz.

2. 20-80%.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
9/125μm G.652 SMF	Lmax			80	km	
Transmitter					-	
Signaling Speed Per Lane		25	5.78125±100p	pm	Gbps	
Optical Wavelength	LO	1294.53		1296.59	nm	
	L1	1299.02		1301.09	nm	
	L2	1303.54		1305.63	nm	
	L3	1308.09		1310.19	nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power		8		12.5	dBm	
Average Launch Power Per Lane		2		6.5	dBm	
Difference in Launch Power Between Any Two Lanes (Average and OMA)				3	dBm	
Average Launch Power of Off Transmitter Per Lane				-30	dBm	
Extinction Ratio	ER	6			dB	
RIN OMA				-130	dB/Hz	
Optical Return Loss Tolerance	ORLT			20	dB	
Transmitter Reflectance				-12	dB	
Transmitter Eye Mask Definition: (X1, X2, X3, Y1, Y2, Y3)		(0.25, 0.4, 0.45, 0.25, 0.28, 0.4)			1	
Mask Margin		5			%	
Receiver						
Signaling Speed Per Lane		25	5.78125±100p	opm	Gbps	
Receive Wavelengths	LO	1294.53		1296.59	nm	
	L1	1299.02		1301.09	nm	
	L2	1303.54		1305.63	nm	
	L3	1308.09		1310.19	nm	
Average Receiver Power Per Lane		-28		-7	dBm	
Receiver Power Per Lane (OMA)				-7	dBm	
Receiver Reflectance				-26	dB	
Receiver Sensitivity Average Per Lane				-28	dBm	1
Receiver 3dB Electrical Upper Cutoff Frequency Per Lane				31	GHz	
Damage Threshold Per Lane		6.5			dBm	
LOS De-Assert	LOSD			-29	dBm	
LOS Assert	LOSA	-40			dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes:

1. Sensitivity is specified at BER@5E⁻⁵ with FEC.

Pin Descriptions

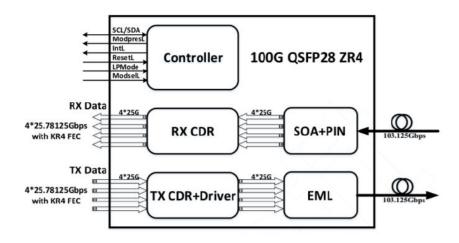
Pin	Symbol	Name/Description	Notes
1	GND	Module Ground.	1
2	Tx2-	Transmitter Inverted Data Input.	
3	Tx2+	Transmitter Non-Inverted Data Input.	
4	GND	Module Ground.	1
5	Tx4-	Transmitter Inverted Data Input.	
6	Tx4+	Transmitter Non-Inverted Data Input.	
7	GND	Module Ground.	1
8	ModSelL	Module Select.	
9	ResetL	Module Reset.	
10	VccRx	+3.3V Receiver Power Supply.	
11	SCL	2-Wire Serial Interface Clock.	
12	SDA	2-Wire Serial Interface Data.	
13	GND	Module Ground.	1
14	Rx3+	Receiver Non-Inverted Data Output.	
15	Rx3-	Receiver Inverted Data Output.	
16	GND	Module Ground.	1
17	Rx1+	Receiver Non-Inverted Data Output.	
18	Rx1-	Receiver Inverted Data Output.	
19	GND	Module Ground.	1
20	GND	Module Ground.	1
21	Rx2-	Receiver Inverted Data Output.	
22	Rx2+	Receiver Non-Inverted Data Output.	
23	GND	Module Ground.	1
24	Rx4-	Receiver Non-Inverted Data Output.	
25	Rx4+	Receiver Inverted Data Output.	
26	GND	Module Ground.	1
27	ModPrsL	Module Present.	
28	IntL	Interrupt.	
29	VccTx	+3.3V Transmitter Power Supply.	
30	Vcc1	+3.3V Power Supply.	
31	LPMode	Low-Power Mode.	
32	GND	Module Ground.	1
33	Tx3+	Transmitter Non-Inverted Data Input.	
34	Tx3-	Transmitter Inverted Data Input.	
35	GND	Module Ground.	1

36	Tx1+	Transmitter Non-Inverted Data Input.	
37	Tx1-	Transmitter Inverted Data Input.	
38	GND	Module Ground.	1

Notes:

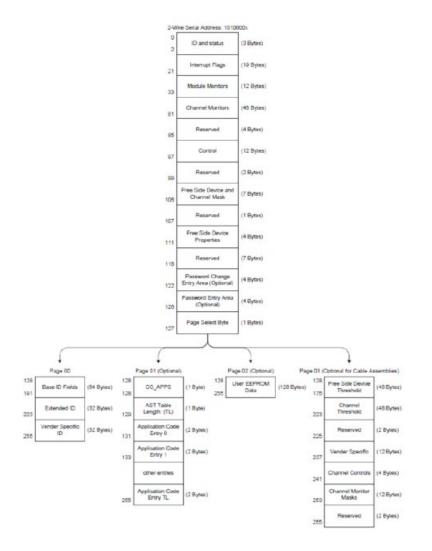
1. Circuit ground is internally isolated from the chassis ground.

Electrical Pad Layout


38 37 36 35 31 30 29 28 27 26 25 24 23 22 21 20	GND TX1n TX1p GND TX3n TX3p GND LPMode Vcc1 VccTx IntL ModPrsL GND RX4p RX4p RX4n GND RX2p RX2n GND		Card Edge		GND TX2n TX2p GND TX4n TX4p GND ModSelL ResetL VccRx SCL SDA GND RX3p RX3n GND RX1p RX1n GND	1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
	Top Side			Bottom	Side	

Viewed from Top

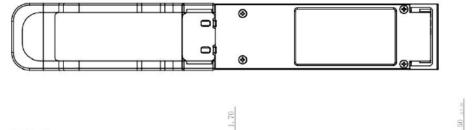
Bottom Side Viewed from Bottom

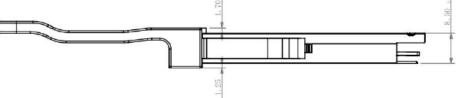

Pin-Out of Connector Block on the Host Board

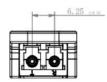
Transceiver Block Diagram

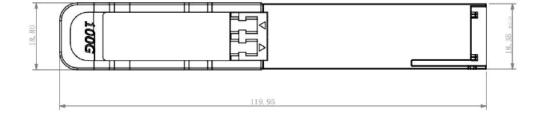
EEPROM Information

EEPROM memory map-specific data field description is as below:


Digital Diagnostic Monitoring Interface


Parameter	Related Bytes (A0[00] Memory)	Accuracy	Notes
Temperature	22 to 23	±3°C	1, 2
Voltage	26 to 27	<3%	2
Bias Current	42 to 49	<10%	2
Tx Power	50 to 57	<3dB	2
Rx Power	34 to 41	<3dB	2


Notes:


- 1. Actual temperature test point is fixed on the module case around the laser.
- 2. Full operating temperature range.
- 3. Five transceiver parameter values are monitored. The table above defines the Monitory parameter's accuracy.

Mechanical Specifications

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223 Email: sales@prolineoptions.com Email: techsupport@prolineoptions.com Web: https://www.prolineoptions.com