

QSFP28-100GB-ZR4-I-C-PRO

Cisco® Compatible TAA Compliant 100GBase-ZR4 QSFP28 Transceiver (SMF, 1295nm to 1309nm, 80km, DOM, -40 to 85C, LC)

Features

- QSFP28 MSA Compliant
- 4 LAN-WDM Lanes MUX/DEMUX Design
- Supports 103.125Gbps Aggregate Bit Rate
- EML Laser and PIN+SOA Receiver
- Single 3.3V Power Supply
- 4x25G Electrical Interface
- Duplex LC Connector
- Maximum Power Consumption of 6.5W
- Single-Mode Fiber
- Industrial Temperature: -40 to 85 Celsius
- Hot Pluggable
- RoHS Compliant and Lead-Free

Applications:

- 100GBase Ethernet
- Access and Enterprise

Product Description

This Cisco® QSFP28 transceiver provides 100GBase-ZR4 throughput up to 80km over single-mode fiber (SMF) using a wavelength of 1295nm to 1309nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Cisco® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	0	3.6	V	
Storage Temperature	Tstg	-40	85	°C	
Operating Case Temperature	Тс	-40	85	°C	1
Operating Humidity	RH	0	85	%	

Notes:

1. Industrial temperature range.

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes		
Power Supply Voltage	Vcc	3.13	3.30	3.47	V			
Power Dissipation				6.5	W			
Transmitter	Transmitter							
Data Rate Per Lane			25.78125		Gbps			
Differential Voltage Pk-Pk	Vpp			900	mV	1		
Common-Mode Voltage	Vcm	-350		2850	mV			
Transition Time	Tr/Tf	10			ps	2		
Differential Termination Resistance Mismatch				10	%			
Eye Width	EW15	0.46			UI			
Eye Height	EH15	95			mV			
Receiver								
Data Rate Per Lane			25.78125		Gbps			
Differential Termination Resistance Mismatch				10	%	1		
Differential Output Voltage Swing	VOUT,pp			900	mV			
Common-Mode Noise (RMS)	Vrms			17.5	mV			
Transition Time	Tr/Tf	12			ps	2		
Eye Width	EW15	0.57			UI			
Eye Height	EH15	228			mV			

Notes:

- 1. At 1MHz.
- 2. 20-80%.

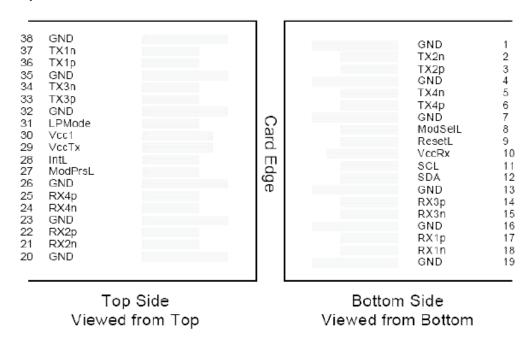
Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
9/125μm G.652 SMF	Lmax			80	km	
Transmitter						
Signaling Speed Per Lane		25.78125±100ppm		om	Gbps	
Optical Wavelength	LO	1294.53		1296.59	nm	
	L1	1299.02		1301.09	nm	
	L2	1303.54		1305.63	nm	
	L3	1308.09		1310.19	nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power		8		12.5	dBm	
Average Launch Power Per Lane		2		6.5	dBm	
Difference in Launch Power Between Any Two Lanes (Average and OMA)				3	dBm	
Average Launch Power of Off Transmitter Per Lane				-30	dBm	
Extinction Ratio	ER	6			dB	
RIN OMA				-130	dB/Hz	
Optical Return Loss Tolerance	ORLT			20	dB	
Transmitter Reflectance				-12	dB	
Transmitter Eye Mask Definition: (X1, X2, X3, Y1, Y2, Y3)		(0.25, 0.	4, 0.45, 0.25, (0.28, 0.4)		1
Mask Margin		5			%	
Receiver						
Signaling Speed Per Lane		25.78125±100ppm		om	Gbps	
Receive Wavelengths	LO	1294.53		1296.59	nm	
	L1	1299.02		1301.09	nm	
	L2	1303.54		1305.63	nm	
	L3	1308.09		1310.19	nm	
Average Receiver Power Per Lane		-28		-7	dBm	
Receiver Power Per Lane (OMA)				-7	dBm	
Receiver Reflectance				-26	dB	
Receiver Sensitivity Average Per Lane				-28	dBm	1
Receiver 3dB Electrical Upper Cutoff Frequency Per Lane				31	GHz	
Damage Threshold Per Lane		6.5			dBm	
LOS De-Assert	LOSD			-29	dBm	
LOS Assert	LOSA	-40			dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes:

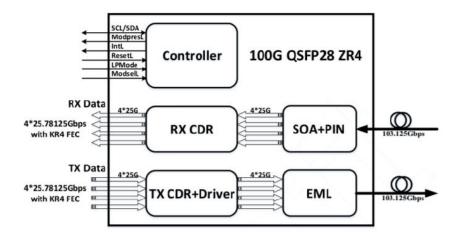
1. Sensitivity is specified at BER@5E⁻⁵ with FEC.

Pin Descriptions

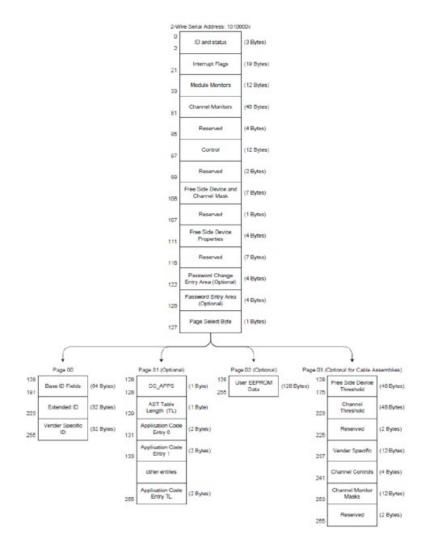

Pin	Symbol	Name/Description	Notes
1	GND	Module Ground.	1
2	Tx2-	Transmitter Inverted Data Input.	
3	Tx2+	Transmitter Non-Inverted Data Input.	
4	GND	Module Ground.	1
5	Tx4-	Transmitter Inverted Data Input.	
6	Tx4+	Transmitter Non-Inverted Data Input.	
7	GND	Module Ground.	1
8	ModSelL	Module Select.	
9	ResetL	Module Reset.	
10	VccRx	+3.3V Receiver Power Supply.	
11	SCL	2-Wire Serial Interface Clock.	
12	SDA	2-Wire Serial Interface Data.	
13	GND	Module Ground.	1
14	Rx3+	Receiver Non-Inverted Data Output.	
15	Rx3-	Receiver Inverted Data Output.	
16	GND	Module Ground.	1
17	Rx1+	Receiver Non-Inverted Data Output.	
18	Rx1-	Receiver Inverted Data Output.	
19	GND	Module Ground.	1
20	GND	Module Ground.	1
21	Rx2-	Receiver Inverted Data Output.	
22	Rx2+	Receiver Non-Inverted Data Output.	
23	GND	Module Ground.	1
24	Rx4-	Receiver Non-Inverted Data Output.	
25	Rx4+	Receiver Inverted Data Output.	
26	GND	Module Ground.	1
27	ModPrsL	Module Present.	
28	IntL	Interrupt.	
29	VccTx	+3.3V Transmitter Power Supply.	
30	Vcc1	+3.3V Power Supply.	
31	LPMode	Low-Power Mode.	
32	GND	Module Ground.	1
33	Tx3+	Transmitter Non-Inverted Data Input.	
34	Tx3-	Transmitter Inverted Data Input.	
35	GND	Module Ground.	1

36	Tx1+	Transmitter Non-Inverted Data Input.	
37	Tx1-	Transmitter Inverted Data Input.	
38	GND	Module Ground.	1

Notes:


1. Circuit ground is internally isolated from the chassis ground.

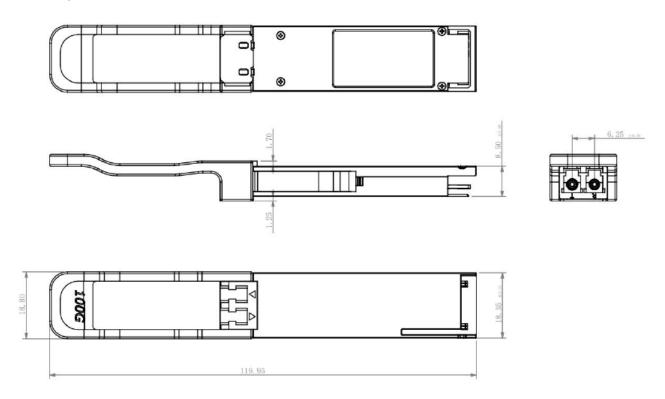
Electrical Pad Layout


Pin-Out of Connector Block on the Host Board

Transceiver Block Diagram

EEPROM Information

EEPROM memory map-specific data field description is as below:


Digital Diagnostic Monitoring Interface

Parameter	Related Bytes (A0[00] Memory)	Accuracy	Notes
Temperature	22 to 23	±3°C	1, 2
Voltage	26 to 27	<3%	2
Bias Current	42 to 49	<10%	2
Tx Power	50 to 57	<3dB	2
Rx Power	34 to 41	<3dB	2

Notes:

- 1. Actual temperature test point is fixed on the module case around the laser.
- 2. Full operating temperature range.
- 3. Five transceiver parameter values are monitored. The table above defines the Monitory parameter's accuracy.

Mechanical Specifications

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223

Email: sales@prolineoptions.com

Email: techsupport@prolineoptions.com Web: https://www.prolineoptions.com