

QSFP-40G-LR4-AR-20-PRO

Arista Networks[®] QSFP-40G-LR4-AR-20 Compatible TAA Compliant 40GBase-LR4 QSFP+ Transceiver (SMF, 1270nm to 1330nm, 20km, LC, DOM)

Features:

- Compliant with IEEE Std 802.3ba, 40G Ethernet LR4
- Compliant with QSFP+MSA
- Management interface specifications per SFF-8436
- 4 CWDM Lane Mux/Demux design
- 4 channels CWDM DFB
- 4 channels PIN photo detector
- Up to 11.1 Gb/s per channel data links
- Single +3.3V power supply
- Class 1 laser safety certified
- Commercial operating temperature: 0°C to +70°C
- Up to 20km on SMF
- RoHS Compliant

Applications:

- 40GBASE-LR4 40G Ethernet
- Fiber channel
- Data Center

Product Description

This Arista Networks[®] QSFP-40G-LR4-AR-20 compatible QSFP+ transceiver provides 40GBase-LR4 throughput up to 20km over single-mode fiber (SMF) using a wavelength of 1270nm to 1330nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Arista Networks[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.

Rev. 101921

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5		4.0	V
Storage Temperature	TS	-40		+85	°C
Operating Case Temperature	Тс	0	25	70	°C
Relative Humidity	RH	5		95	%
Data Rate PER Channel			10.3125		Gb/s

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Module Supply Current	lcc			1100	mA	
Power Dissipation	PD			3500	mW	
Transmitter						
Input Differential Impedance	Zin		100		Ω	
Differential Data Input Swing	VIN, P-P	180		900	mVp-p	
Receiver						
Output Differential Impedance				900	Ω	
Differential Data Output Swing	Zout, p-p	300		850	mVp-p	1
Data Output Rise Time, Fall Time	tr,tf	28			ps	2

Notes:

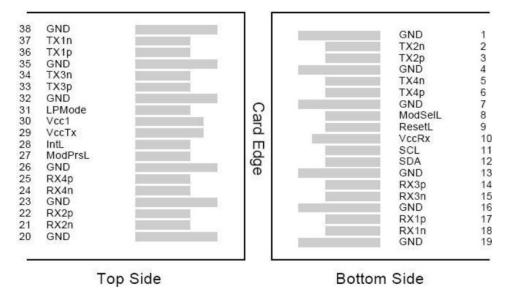
- 1. Internally AC coupled, but requires an external 100Ω differential load termination.
- 2. 20-80%.

Optical Characteristics

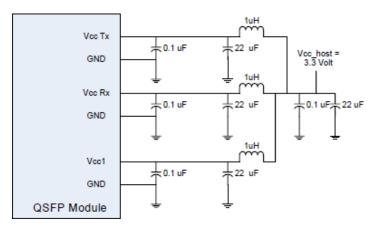
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Launch Optical Power per lane	Ро	-3		+2.3	dBm	1
Total Launch Optical Power	Ро			+8	dBm	1
Center Wavelength	٨0	1264.5	1271	1277.5	nm	
	Λ1	1284.5	1291	1297.5	nm	
	٨2	1304.5	1311	1317.5	nm	
	٨3	1324.5	1331	1337.5	nm	
Extinction Ratio	EX	3.5			dB	2
Spectral width (-20dB)	Δλ			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Transmitter and Dispersion Penalty	TDP			2.3	dB	
Optical Return Loss Tolerance	ORLT			12	dB	
Eye Diagram		IEEE Std 802.3ba compatible				
Receiver						
Center Wavelength	λς	1260		1340	nm	
Receiver Sensitivity (OMA)	S			-11.5	dBm	3
Damage Threshold	POL	3.3			dBm	3
Optical Return Loss	ORL	26			dB	
LOS De-Assert	LOSD			-12	dBm	
LOS Assert	LOSA	-30			dB	
LOS Hysteresis		0.5			dB	

Notes:

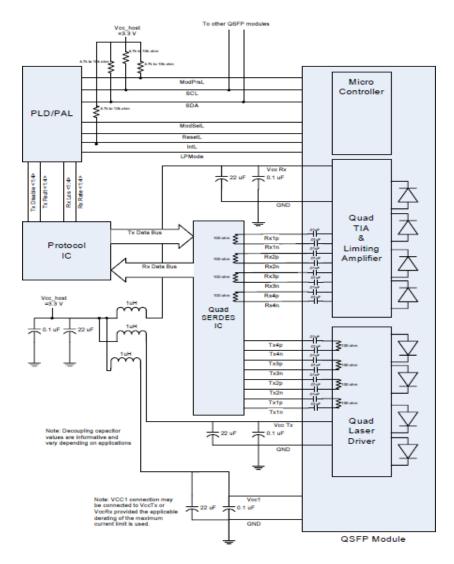
- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2³¹-1 test pattern @ 10.3125 Gbps
- 3. Measured with a PRBS 2^{31} -1 test pattern, 10.3125 Gb/s, BER <10⁻¹²

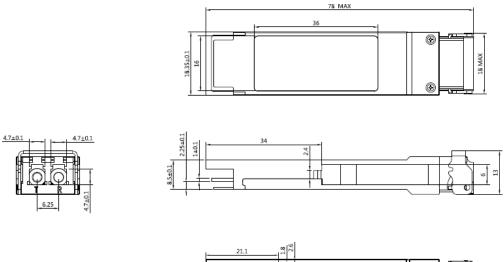

Pin	scriptions Symbol	Name/Descriptions	Ref.
1	GND	Transmitter Ground (Common with Receiver Ground)	1
2	Tx2-	Transmitter Inverted Data Input	
3	Tx2+	Transmitter Non-Inverted Data output	
4	GND	Transmitter Ground (Common with Receiver Ground)	1
5	Tx4-	Transmitter Inverted Data Input	
6	Tx4+	Transmitter Non-Inverted Data output	
7	GND	Transmitter Ground (Common with Receiver Ground)	1
8	ModSelL	Module Select	2
9	ResetL	Module Reset	2
10	VccRx	3.3V Power Supply Receiver	
11	SCL	2-Wire serial Interface Clock	2
12	SDA	2-Wire serial Interface Data	2
13	GND	Transmitter Ground (Common with Receiver Ground)	1
14	Rx3+	Receiver Non-Inverted Data Output	
15	Rx3-	Receiver Inverted Data Output	
16	GND	Transmitter Ground (Common with Receiver Ground)	1
17	Rx1+	Receiver Non-Inverted Data Output	
18	Rx1-	Receiver Inverted Data Output	
19	GND	Transmitter Ground (Common with Receiver Ground)	1
20	GND	Transmitter Ground (Common with Receiver Ground)	1
21	Rx2-	Receiver Inverted Data Output	
22	Rx2+	Receiver Non-Inverted Data Output	
23	GND	Transmitter Ground (Common with Receiver Ground)	1
24	Rx4-	Receiver Inverted Data Output	1
25	Rx4+	Receiver Non-Inverted Data Output	
26	GND	Transmitter Ground (Common with Receiver Ground)	1
27	ModPrsl	Module Present	
28	IntL	Interrupt	2
29	VccTx	3.3V power supply transmitter	
30	Vcc1	3.3V power supply	
31	LPMode	Low Power Mode	2
32	GND	Transmitter Ground (Common with Receiver Ground)	1
33	Tx3+	Transmitter Non-Inverted Data Input	
34	Tx3-	Transmitter Inverted Data Output	

35	GND	Transmitter Ground (Common with Receiver Ground)	1
36	Tx1+	Transmitter Non-Inverted Data Input	
37	Tx1-	Transmitter Inverted Data Output	
38	GND	Transmitter Ground (Common with Receiver Ground)	1


Notes:

- 1. The module signal grounds are isolated from the module case.
- 2. This is an open collector/drain output that on the host board requires a 4.7K Ω to 10K Ω pull-up resistor to VccHost.


Electrical Pin-out Details


Recommended Host Board Power Supply Filter Network

Recommended Application Interface Block Diagram

Mechanical Specifications

Unit : mm

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate overthe last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223 Email: <u>sales@prolineoptions.com</u> Email: <u>techsupport@prolineoptions.com</u> Web: <u>https://www.prolineoptions.com</u>