

QSFP-100G-LR4-I-PRO

Arista Networks[®] QSFP-100G-LR4-I Compatible TAA Compliant 100GBase-LR4 QSFP28 Transceiver (SMF, 1295nm to 1309nm, 10km, -40 to 85C, LC)

Features

- SFF-8665 Compliance
- Single-mode Fiber
- Duplex LC Connector
- Hot Pluggable
- Metal with Lower EMI
- Industrial Temperature -40 to 85 Celsius
- RoHS Compliant and Lead Free
- Excellent ESD Protection

Applications:

- 100GBase Ethernet
- Access and Enterprise

Product Description

This Arista Networks[®] QSFP-100G-LR4-I compatible QSFP28 transceiver provides 100GBase-LR4 throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1295nm to 1309nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Arista Networks[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.

Rev. 030524

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5		3.6	V
Storage Temperature	TS	-40		85	°C
Operating Case Temperature	Тс	-40	25	85	°C
Operating Humidity	RH	5		85	%
Receiver Damage Threshold, per Lane	Rxdmg	5.5			dBm

Electrical Characteristics

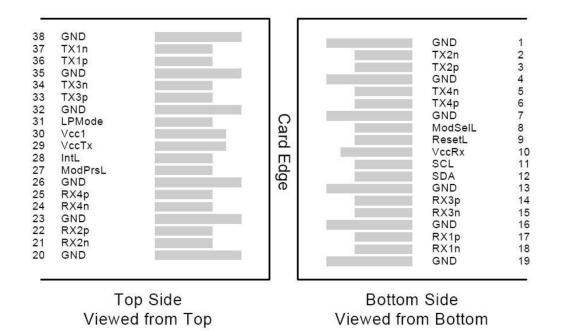
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes		
Power Dissipation	PD			4.0	W			
Power Supply Voltage	Vcc	3.135	3.3	3.465	V			
Transmitter								
Differential data input swing per lane	Vin			900	Mvp-p			
Input Impedance (Differential)	Zin			10	%			
Stressed Input Parameters								
Eye width		0.46			UI			
Applied pk-pk sinusoidal jitter		IEEE 802.3bm	Table 88-13	1				
Eye height		95			mv			
DC common mode voltage		-350		2850	mv			
Receiver								
Differential output amplitude		200		900	Mvp-p			
Output Impedance (Differential)	Zout			10	%			
Output Rise/Fall Time	tr/tf	12			ps	20%~80%		
Eye width		0.57			UI			
Eye height differential		228			mv			
Vertical eye closure				5.5	db			

Optical Characteristics

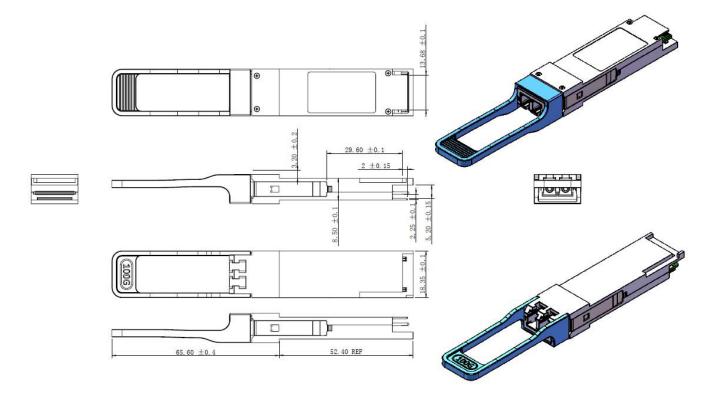
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Signaling Speed per Lane	Brave		25.78		Gbps	
Data Rate Variation		-100		+100		
Lane_0 Center Wavelength	λC0	1294.53	1295.56	1296.59	nm	
Lane_1 Center Wavelength	λC1	1299.02	1300.05	1301.09	nm	
Lane_2 Center Wavelength	λC2	1303.54	1304.58	1305.63	nm	
Lane_3 Center Wavelength	λC3	1308.09	1309.14	1310.19	nm	
Average Launch Power each Lane	P _{each}	-4.3		4.5	dBm	1
Optical Modulation Amplitude (OMA) each Lane	ТхОМА	-1.3		4.5	dBm	
Difference in launch power between any two lanes (OMA)				5	dB	
Launch power in OMA minus TDP, each lane		-2.3			dBm	
Transmitter and dispersion penalty (TDP), each lane				2.2	dB	
Extinction Ratio	ER	4			dB	
Side-mode Suppression ratio	SMSRmin	30			dB	
Average launch power of OFF transmitter per lane				-30	dBm	
Relative Intensity Noise	RIN			-130	dB/hz	
Transmitter Reflectance				-12	dB	
Optical Return Loss Tolerance				20	dB	
Transmitter eye mask definitions: X1, X2, X3, Y1, Y2, Y3	(0.25, 0.4, 0.45,	0.25, 0.28, 0.4	4		2
Receiver						
Signaling Speed per Lane	BRAVE		25.78		Gbps	
Data Rate Variation		-100		+100	ppm	
Damage threshold per lane	Rxdmg	5.5			dBm	
Lane_0 Center Wavelength	λC0	1294.53	1295.56	1296.59	nm	
Lane_1 Center Wavelength	λC1	1299.02	1300.05	1301.09	nm	
Lane_2 Center Wavelength	λC2	1303.54	1304.58	1305.63	nm	
Lane_3 Center Wavelength	λC3	1308.09	1309.14	1310.19	nm	
Average Receive Power per Lane	Rxpow	-10.6		4.5	dBm	3
Receive Power (OMA) per Lane	RxOMA			4.5	dBm	
Receive Sensitivity in OMA per Lane	Rxsens			-8.6	dBm	
Receiver 3 dB electrical upper cutoff frequency, per lane				31	GHz	
Stressed Receiver Sensitivity (OMA) per Lane	RXSRS			-6.8	dBm	4
Optical Return Loss	ORL			-26	dB	
LOS Assert	LOSA	-25			dBm	

LOS De-Assert	LOSD			-12	dBm	
LOS Hysteresis		0.5			dB	
Conditions of stressed receiver sensitivity test						
Vertical eye closure penalty	VECP		1.8		dB	5
Stressed eye J2 Jitter	J2		0.3		UI	5
Stressed eye J9 Jitter	19		0.47		UI	5

Notes:


- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Hit ratio 5x10⁻⁵.
- Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 4. Measured with conformance test signal at TP3 for BER = 10–12.
- 5. Vertical eye closure penalty, stressed eye J2 Jitter, and stressed eye J9 Jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Pin	Logic	Symbol	Name/Descriptions	Ref.
1		GND	Module Ground	1
2	CML-I	Tx2-	Transmitter inverted data input	
3	CML-I	Tx2+	Transmitter non-inverted data input	
4		GND	Module Ground	1
5	CML-I	Tx4-	Transmitter inverted data input	
6	CML-I	Tx4+	Transmitter non-inverted data input	
7		GND	Module Ground	1
8	LVTTL-I	MODSEIL	Module Select	2
9	LVTTL-I	ResetL	Module Reset	2
10		VCCRx	+3.3v Receiver Power Supply	
11	LVCMOS-I	SCL	2-wire Serial interface clock	2
12	LVCMOS-I/O	SDA	2-wire Serial interface data	2
13		GND	Module Ground	1
14	CML-O	RX3+	Receiver non-inverted data output	
15	CML-O	RX3-	Receiver inverted data output	
16		GND	Module Ground	1
17	CML-O	RX1+	Receiver non-inverted data output	
18	CML-O	RX1-	Receiver inverted data output	
19		GND	Module Ground	1
20		GND	Module Ground	1
21	CML-O	RX2-	Receiver inverted data output	
22	CML-O	RX2+	Receiver non-inverted data output	
23		GND	Module Ground	1
24	CML-O	RX4-	Receiver inverted data output	
25	CML-O	RX4+	Receiver non-inverted data output	
26		GND	Module Ground	1
27	LVTTL-O	ModPrsL	Module Present, internal pulled down to GND	
28	LVTTL-O	IntL	Interrupt output, should be pulled up on host board	2
29		VCCTx	+3.3v Transmitter Power Supply	
30		VCC1	+3.3v Power Supply	
31	LVTTL-I	LPMode	Low Power Mode	2
32		GND	Module Ground	1
33	CML-I	Tx3+	Transmitter non-inverted data input	
34	CML-I	Tx3-	Transmitter inverted data input	
35		GND	Module Ground	1
36	CML-I	Tx1+	Transmitter non-inverted data input	
37	CML-I	Tx1-	Transmitter inverted data input	
38		GND	Module Ground	1


Notes:

- 1. Module circuit ground is isolated from module chassis ground with in the module.
- 2. Open collector; should be pulled up with 4.7k-10k ohms on host board to a voltage between 3.15V and 3.6V.

Electrical Pin-out Details

Mechanical Specifications

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223 Email: sales@prolineoptions.com Email: techsupport@prolineoptions.com Web: https://www.prolineoptions.com