

QDD-4X100G-LR-S-PRO

Cisco® QDD-4X100G-LR-S Compatible TAA Compliant 400GBase-PLR4 QSFP-DD Transceiver (SMF, 1310nm, 10km, DOM, CMIS 4.0, 0 to 70C, MPO)

Features

- INF-8628 Compliance
- MPO Connector
- Commercial Temperature 0 to 70 Celsius
- Single-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications:

- 400GBase Ethernet
- Access, Metro and Enterprise

Product Description

This Cisco® QDD-4X100G-LR-S compatible QSFP-DD transceiver provides 400GBase-PLR4 throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1310nm via an MPO connector. It is guaranteed to be 100% compatible with the equivalent Cisco® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. — made or designated country end products.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Power Supply Voltage	VCC	0		3.6	V	3.3V
Storage Temperature	Ts	-40		85	°C	
Case Operating Temperature	TC	0	25	70	°C	
Optical Receiver Input				5.8	dBm	Average

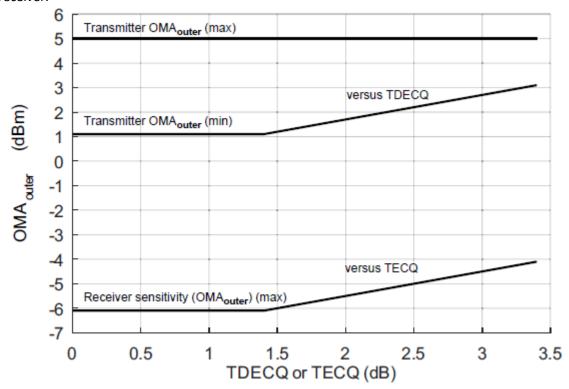
Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Module Power Supply Noise Tolerance	PSNR _{mod}			66	mV	10 Hz – 10 MHz
Power Consumption				12	W	
Instantaneous peal current	lcc_ip_6			4800	mA	
Sustained peak current	lcc_sp_6			3960	mA	
Supply Current	Icc_6			3827.8	mA	Steady state
Transmitter Output (Each Lane, at TP4) Note 1						
Signaling rate per lane (range)		-100ppm	26.5625	+100ppn	GBd	
AC Common-mode output voltage	RMS			17.5	mV	
Differential peak-to-peak output voltage				900	mV	
Near-end ESMW (Eye symmetry mask width)		0.265			UI	
Near-end Eye height, differential		70			mV	
Far-end ESMW (Eye symmetry mask width)		0.2			UI	
Far-end Eye height, differential		30			mV	
Far-end pre-cursor ISI ratio		-4.5		2.5	%	
Differential output return loss		Equation (83E-2)			dB	2
Common to differential mode conversion return loss		Equation (83E-3)			dB	2
Differential termination mismatch				10	%	
Transition time (20% to 80%)		9.5			ps	
DC common mode voltage		-350		2850	mV	
Receiver Input (Each Lane)						
Signaling rate per lane (range)		-100ppm	26.5625	+100ppm	GBd	
Differential pk-pk input voltage tolerance		900			mV	at TP1a
Differential Input Return Loss		Equation (83E-5)			dB	at TP1, Note 2
Differential to common mode input return loss		Equation (83E-6)			dB	at TP1,Note 2
Differential termination mismatch				10	%	at TP1

ESMW (Eye symmetry mask width)	0.22			UI	at TP1a
Eye width	0.22			UI	at TP1a
Applied pk-pk sinusoidal jitter	Table 120E–6			MHz, UI	at TP1a
Eye height	32			mV	at TP1a
Single-ended input voltage tolerance range	-0.4		3.3	V	at TP1a
DC common mode voltage	-350		2850	mV	at TP1

Notes:

- 1. Electrical module output is squelched for loss of optical input signal.
- 2. IEEE 802.3-2018 Section 6

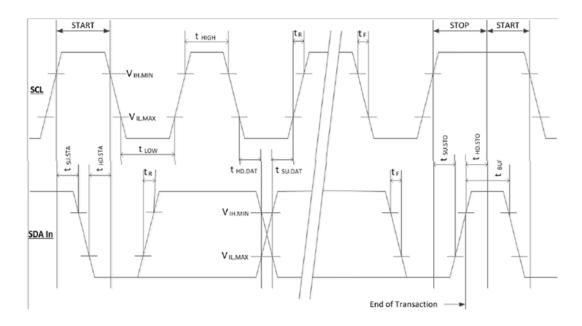

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Channel data rate	fDC	106.25			Gbit/s	
Signaling rate	fsG	53.125			GBd	
Signal speed variation from nominal	⊿f _{SG}	-100		+100	ppm	
Lane wavelength (range)	λς	1304.5		1317.5	nm	
Side-mode suppression ratio	SMSR	30			dB	
Average launch power		-1.9		4.8	dBm	1
Outer Optical Modulation		1.1		5.0	dBm	for TDECQ <1.4 dB
Amplitude (OMAouter) [Figure below]		-0.3 + TDECQ				for 1.4 dB ≤ TDECQ ≤ 3.4 dB
Transmitter and dispersion eye closure for PAM4	TDECQ			3.4	dB	
Transmitter eye closure for PAM4	TECQ			3.4	dB	
TDECQ - TECQ				2.5	dB	
Average Optical Output Power of Off Transmitter	Poff			-15	dBm	
Extinction Ratio	ER	3.5			dB	
Transmitter transition time				17	ps	
Transmitter over/under-shoot				22	%	
Transmitter peak-to-peak power				5.5	dBm	
RIN _{15.6} OMA				-136	dB/Hz	
Optical return loss tolerance				15.6	dB	
Transmitter reflectance				-26	dB	2
Receiver						
Average receive power		-8.2		4.8	dBm	3
Receive power (OMAouter)				5.0	dBm	
Receiver reflectance				-26	dB	
Receiver sensitivity (OMAouter) [Figure below]		Max -6.1				for TECQ <1.4 dB, Note 4
		Max (-7.5 + TE	ECQ)			for 1.4 dB ≤ TECQ ≤ 3.4 dB, Note 4
Stressed receiver sensitivity (OMAouter)				-4.1	dBm	4,5
Conditions of stressed receiver sensiti	vity test [N	ote 6]				
Stressed eye closure for PAM4	SECQ	3.4			dB	

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Transmitter reflectance is defined looking into the transmitter.

- 3. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 4. For when Pre-FEC BER is 2.4×10^{-4} .
- 5. Measured with conformance test signal at TP3 (see 140.7.10) for the BER specified in 140.1.1.
- 6. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.


Transmitter OMAouter versus TDECQ and Receiver sensitivity (OMAouter) versus TECQ for 100GBASE-LR1

Management Interface Timing Parameters

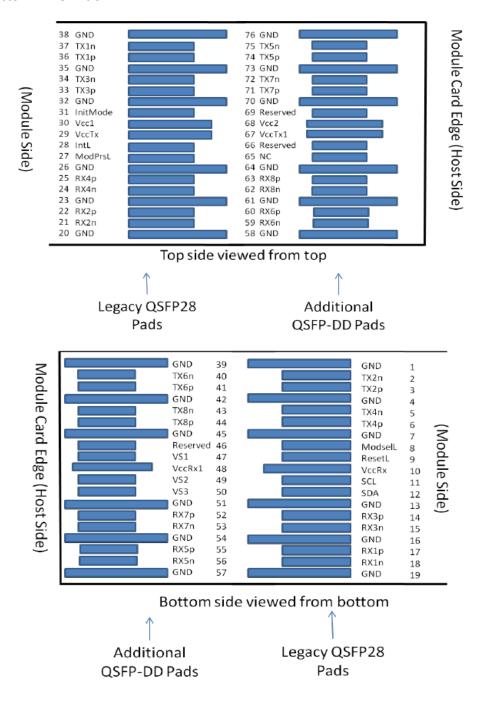
Parameter	Symbol		lode Plus	Unit	Conditions
		Min	MHz) Max		
Clock Frequency	fSCL	0	1000	kHz	
Clock Pulse Width Low	tLOW	0.50		μs	
Clock Pulse Width High	tHIGH	0.26		μs	
Time bus free before new transmission can start	tBUF	1		μs	Between STOP and START andbetween ACK and ReStart
START Hold Time	tHD.STA	0.26		μs	The delay required between SDA becoming low and SCL starting to golow in a START
START Setup Time	tSU.STA	0.26		μs	The delay required between SCL becoming high and SDA starting to go low in a START
Data In Hold Time	tHD.DAT	0		μs	
Data In Setup Time	tSU.DAT	0.1		μs	
Input Rise Time	tR		120	ns	From (VIL,MAX=0.3*Vcc) to (VIH, MIN=0.7*Vcc)
Input Fall Time	tF		120	ns	From (VIH,MIN=0.7*Vcc) to (VIL,MAX=0.3*Vcc)
STOP Setup Time	tSU.STO	0.26		μs	
STOP Hold Time	tHD.STO	0.26		us	
Aborted sequence. bus release	Deselect _Abort		2	ms	Delay from a host de-asserting ModSelL (at any point in a bus sequence) to the QSFP-DD module releasing SCLand SDA
ModSelL Setup Time ¹	tSU.ModSelL	2		ms	ModSelL Setup Time is the setup timeon the select lines before the start of a host initiated serial bus sequence.
ModSelL Hold Time ¹	tHD.ModSelL	2		ms	ModSelL Hold Time is the delay from completion of a serial bus sequence to changes of module Select status.
Serial Interface ClockHoldoff "Clock Stretching"	T_clock_hold		500	us	Maximum time the QSFP-DD modulemay hold the SCL line low before continuing with a read or write operation
Complete Single or Sequential Write to non-volatile registers	tWR		80	ms	Complete Write of up to 8 Bytes
Accept a single or sequential write tovolatile memory.	tNACK		80	ms	Time required for the module to accept a single or sequential write to volatile memory.
Endurance (Write Cycles)		50k		cycles	Module Case Temperature= 70°C

Notes:

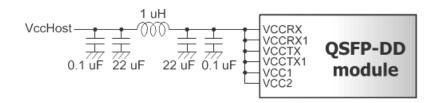
1. When the host has determined that module is QSFP-DD, the management registers can be read to determine alternate supported ModSelL set up and hold times.

2-Wire Interface Timing Diagram

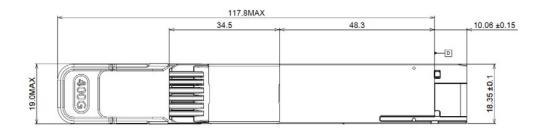
Pin Descriptions

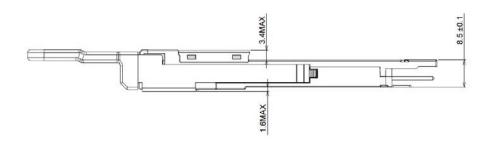

Pin	Logic	Symbol	Name/Descriptions	Plug Sequence	Notes
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	
9	LVTTL-I	ResetL	Module Reset	3B	
10		VccRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS-I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16	GND	Ground	1B		1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	1B	1
27	LVTTL-O	ModPrsL	Module Present	3B	
28	LVTTL-O	IntL	Interrupt	3B	
29		VccTx	+3.3V Power supply transmitter	2B	2
30		Vcc1	+3.3V Power supply	2B	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	3B	
32		GND	Ground	1B	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3B	
34	CML-I	Tx3n	Transmitter Inverted Data Input	3B	
35		GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	

41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Tx8p	Transmitter Non-Inverted Data Input	3A	
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VccRx1	3.3V Power Supply	2A	2
49		VS2	Module Vendor Specific 2	3A	3
50		VS3	Module Vendor Specific 3	3A	3
51		GND	Ground	1A	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	3A	
53	CML-O	Rx7n	Receiver Inverted Data Output	3A	
54		GND	Ground	1A	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A	
56	CML-O	Rx5n	Receiver Inverted Data Output	3A	
57		GND	Ground	1A	1
58		GND	Ground	1A	1
59	CML-O	Rx6n	Receiver Inverted Data Output	3A	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A	
61		GND	Ground	1A	1
62	CML-O	Rx8n	Receiver Inverted Data Output	3A	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	3A	
64		GND	Ground	1A	1
65		NC	No Connect	3A	3
66		Reserved	For future use	3A	3
67		VccTx1	3.3V Power Supply	2A	2
68		Vcc2	3.3V Power Supply	2A	2
69	LVTTL-I	Reserved	Precision Time Protocol (PTP) reference clock input	3A	3
70		GND	Ground	1A	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A	
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A	
73		GND	Ground	1A	1
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	3A	
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A	
76		GND	Ground	1A	1


Notes:

- 1. QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are refered to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1


QSFPDD Connector Pin Definition


Recommended Power Supply Filter

Mechanical Specifications

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223

Email: sales@prolineoptions.com

Email: techsupport@prolineoptions.com Web: https://www.prolineoptions.com