OC12-SFP-MM-PRO
Brocade ${ }^{\circledR}$ (Formerly) OC12-SFP-MM Compatible TAA Compliant OC-12-SR SFP Transceiver (MMF, 1310nm, 2km, 0 to 70C, LC)

Features

- INF-8074 and SFF-8472 Compliance
- Duplex LC Connector
- Commercial Temperature 0 to 70 Celsius
- Single-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications:

- OC-12 Transmission
- Access and Enterprise

Product Description

This Brocade ${ }^{\circledR}$ (Formerly) OC12-SFP-MM compatible SFP transceiver provides OC-12 (622 mbs) transmission rates for up to 2 km over multi-mode fiber (MMF) using a wavelength of 1310 nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Brocade ${ }^{\circledR}$ (Formerly) transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. It is built to meet or exceed the specifications of Brocade ${ }^{\circledR}$ (Formerly), as well as to comply with MSA (Multi-Source Agreement) standards to ensure seamless network integration. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. \& 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. - made or designated country end products.

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1\& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5		3.6	V
Storage Temperature	TS	-40		+85	${ }^{\circ} \mathrm{C}$
Operating Case Temperature	Tc	0		70	${ }^{\circ} \mathrm{C}$
Operating Humidity	RH	5		85	\%
Receiver Power	$\mathrm{R}_{\text {MAX }}$			-8	dBm
Data Rate			622		Mbps

Electrical Characteristics ($\mathrm{TOP}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{Volts}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.15	3.30	3.45	V	
Power Supply Current	Icc			300	mA	
Power Consumption	P DISS			800	mW	
Transmitter						
Single ended data input swing	Vin,pp	400		2000	mVpp	1
Input differential impedance	Zin	85	100	115	Ω	2
Receiver						
Single ended data output swing	Vout, pp	400		2000	mVpp	1
Output differential impedance	Zin	80	100	120	Ω	

Notes:

1. AC coupled.
2. Rin > 100 kohms @ DC

Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
$9 \mu \mathrm{~m}$ Core Diameter SMF	L		10		km	
Data Rate			622		Mbps	
Transmitter						
Average Output Power	Pout	-15		-8	dBm	1
Optical Extinction Ratio	ER	10			dB	
Optical Wavelength	T λ	1260	1310	1360	nm	
Spectral Width (RMS)	$\Delta \lambda$			4	nm	
Total Jitter	TJ			0.43	UI	2
Rise/Fall Time (20\%~80\%)	tr/tf			0.26	ns	
Receiver						
Receiver Sensitivity	Pmin			-28	dBm	3
Receiver Overload	Pmax	-8			dBm	
Optical Center Wavelength	λC	1260		1600	nm	

Notes:

1. Coupled into a Single-mode fibre
2. Filtered, measured with a PRBS $2^{23}-1$ test pattern @622Mbps.
3. Minimum average optical power is measured at $B E R$ less than $1 E-12$, with $2^{\wedge 23}-1$ PRBS and $E R=9 d B$

Pin Descriptions

Pin	Symbol	Name/Descriptions	Ref.
1	VeeT	Transmitter Ground (Common with Receiver Ground).	1
2	TX Fault	Transmitter Fault. LVTTL-O	2
3	TX Disable	Transmitter Disable. Laser output disabled on high or open. LVTT-I.	3
4	SDA	2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I/O.	
5	SCL	2-Wire Serial Interface Data Line (Same as MOD-DEF2 in INF-8074i). LVTTL-I.	
6	MOD_ABS	Module Absent, Connect to VeeT or VeeR in Module.	4
7	RSO	Rate Select 0. Not used	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation. LVTTL-O.	2
9	RS1	Rate Select 1. Not used	5
10	VeeR	Receiver Ground (Common with Transmitter Ground).	1
11	VeeR	Receiver Ground (Common with Transmitter Ground).	1
12	RD-	Receiver Inverted DATA out. AC Coupled. CML-O.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled. CML-O.	
14	VeeR	Receiver Ground (Common with Transmitter Ground).	1
15	VccR	Receiver Power Supply.	
16	VccT	Transmitter Power Supply.	
17	VeeT	Transmitter Ground (Common with Receiver Ground).	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled. CML-I.	
19	TD-	Transmitter Inverted DATA in. AC Coupled. CML-O.	
20	VeeT	Transmitter Ground (Common with Receiver Ground).	1

Notes:

1. The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.
2. This contact is an open collector/drain output and should be pulled up to the Vcc_Host with resister in the range $4.7 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$. Pull ups can be connected to one or several power supplies, however the host board design shall ensure that no module contract has voltage exceeding module VccT/R +0.5.V.
3. Tx_Disable is an input contact with a $4.7 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$ pull-up resistor to VccT inside module.
4. Mod_ABS is connected to VeeT or VeeR in the SFP+ module. The host may pull the contract up to Vcc_Host with a resistor in the range from $4.7 \mathrm{~K} \Omega$ to $10 \mathrm{~K} \Omega$. Mod_ABS is asserted "High" when the SFP+ module is physically absent from a host slot.
5. Internally pulled down per SFF-8431

Pin-out of connector Block on Host board

Recommended Circuit Schematic

Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP MultiSourcing Agreement (MSA).

EEPROM Information

EEPROM memory map specific data field description is as below:

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223
Email: sales@prolineoptions.com
Email: techsupport@prolineoptions.com
Web: https://www.prolineoptions.com

