

MMA1T00-HS-PRO

Mellanox® MMA1T00-HS Compatible TAA Compliant 200GBase-SR4 QSFP56 Infiniband HDR Transceiver (MMF, 850nm, 100m, DOM, 0 to 70C, MPO)

Features

- Supports SFF-8636 management interface
- Multi-mode Fiber
- MPO Connector
- Hot Pluggable
- Metal with Lower EMI
- Commercial Temperature 0 to 70 Celsius
- RoHS Compliant and Lead-Free
- Excellent ESD Protection

Applications:

- 200GBase
- Infiniband HDR
- Access and Enterprise

Product Description

This Mellanox® MMA1T00-HS compatible QSFP56 transceiver provides 200GBase-SR4 throughput up to 100m over multi-mode fiber (MMF) using a wavelength of 850nm via an MPO connector. It is guaranteed to be 100% compatible with the equivalent Mellanox® transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	0		3.63	V	
Storage Temperature	Tstg	-40		85	°C	
Relative Humidity	RH	5		85	%	1
Operating Case Temperature	Тс	0		70	°C	
Bit Error Ratio	BER			2.4E-4		2

Notes:

- 1. Non-condensing.
- 2. The typical BER is better than 1E-6 when measured with a transmitter to produce SECQ up to 3dB.

Electrical Characteristics

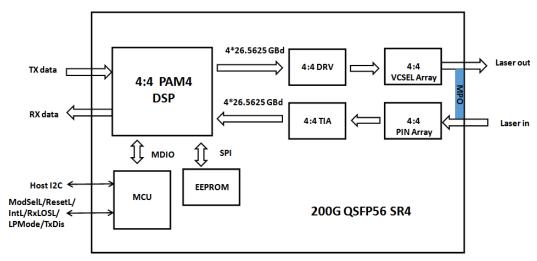
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Module Supply Voltage	Vcc	3.135	3.3	3.465	V		
Module Supply Current	Icc			1600	mA		
Module Power Dissipation	P _D			5	W		
Transmitter							
Differential Data Input Voltage Peak- to-Peak Swing	VIN,pp			900	mV		
Receiver							
Differential Data Output Voltage Peak-to-Peak Swing	VOUT,pp			900	mV		

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Signaling Rate Per Lane	Rate		26.5625		GBd	
Modulation Format	MF		PAM4			
Signaling Speed Accuracy	SSA	-100		100	ppm	
Center Wavelength	λ		850		nm	
RMS Spectral Width	Δλ			0.6	nm	
Optical Return Loss Tolerance	ORLT			12	dB	
Average Optical Power	Pavg	-6.5		+4	dBm	
Extinction Ratio	ER	3			dB	
Optical Modulation Amplitude Per Lane	OMA	-4.5		+3	dBm	
Launch Power in OMA Outer Minus TDECQ Per Lane		-5.9			dBm	
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ) Per Lane	TDECQ			4.5	dB	
TDECQ – 10*log ₁₀ (Ceq) Per Lane				4.5	dB	
Relative Intensity Noise	RIN			-128	dB/Hz	
Transmitter Transition Time Per Lane				34	ps	
Laser Off Power				-30	dBm	
Encircled Flux	EF		≥86% at 19µm ≤ 30% at 4.5µm			
Receiver						
Signaling Rate Per Lane	Rate		26.5625		GBd	
Modulation Format	MF		PAM4			
Signaling Speed Accuracy	SSA	-100		+100	ppm	
Center Wavelength	λ		850		nm	
Average Receive Power Per Lane	Pavg	-8.4		+4	dBm	
Receive Power Per Lane OMA	Ро			3	dBm	
Receiver Reflectance	RL			-12	dB	
Receiver Sensitivity OMA Per Lane	S			Max = (-6.5, SECQ-7.9)	dBm	1
Damage Threshold	THd	5			dBm	

Notes:

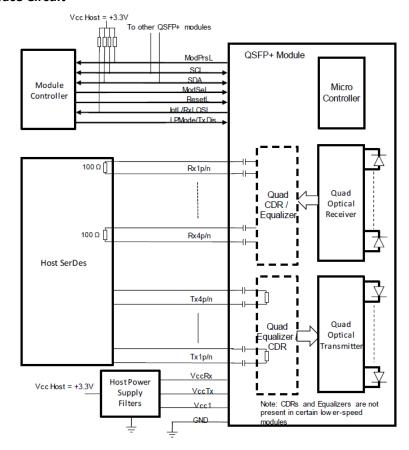
1. Receiver sensitivity is informative and defined for a transmitter with a value of SECQ up to 4.5dB.


Pin Descriptions

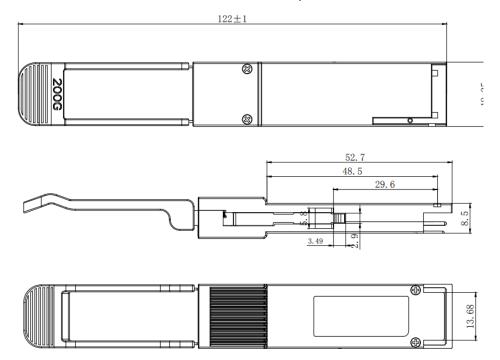
Pin Des	scriptions		
Pin	Symbol	Description	Notes
1	GND	Ground.	1
2	Tx2-	Transmitter Inverted Data Input.	
3	Tx2+	Transmitter Non-Inverted Data Input.	
4	GND	Ground.	1
5	Tx4-	Transmitter Inverted Data Input.	
6	Tx4+	Transmitter Non-Inverted Data Input.	
7	GND	Ground.	
8	ModSelL	Module Select.	
9	ResetL	Module Reset.	
10	VccRx	+3.3V Power Supply Receiver.	2
11	SCL	2-Wire Serial Interface Clock.	
12	SDA	2-Wire Serial Interface Data.	
13	GND	Ground.	
14	Rx3+	Receiver Non-Inverted Data Output.	
15	Rx3-	Receiver Inverted Data Output.	
16	GND	Ground.	1
17	Rx1+	Receiver Non-Inverted Data Output.	
18	Rx1-	Receiver Inverted Data Output.	1
19	GND	Ground.	1
20	GND	Ground.	
21	Rx2-	Receiver Inverted Data Output.	
22	Rx2+	Receiver Non-Inverted Data Output.	
23	GND	Ground.	
24	Rx4-	Receiver Inverted Data Output.	
25	Rx4+	Receiver Non-Inverted Data Output.	
26	GND	Ground.	1
27	ModPrsL	Module Present.	
28	IntL/RxLOSL	Interrupt. Optionally configurable as RxLOSL via the management interface (SFF-8636).	
29	VccTx	+3.3V Power Supply Transmitter.	2
30	Vcc1	+3.3V Power Supply.	2
31	LPMode/TxDis	Low-Power Mode. Optionally configurable as TxDis via the management interface (SFF-8636).	
32	GND	Ground.	1
33	Tx3+	Transmitter Non-Inverted Data Input.	
34	Tx3-	Transmitter Inverted Data Input.	
35	GND	Ground.	1
36	Tx1+	Transmitter Non-Inverted Data Input.	
37	Tx1-	Transmitter Inverted Data Input.	
38	GND	Ground.	1

Notes:

- 1. GND is the symbol for signal and supply (power) common for the module. All are common within the module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccRx, Vcc1, and VccTx are applied concurrently and may be internally connected within the module in any combination.


Block Diagram of Transceiver

Transmitter Section: This module converts 4-channel 53.125Gbps electrical data to 4-channel 850nm 53.125Gbps optical signals for 212Gbps optical transmission.


Receiver Section: Similarly, this module optically converts 4-channel 850nm 53.125Gbps optical signals to 4-channel electrical data output on the receiver side.

Recommended Interface Circuit

Mechanical Specifications

Unit is millimeter. All dimensions are ±0.1mm unless otherwise specified.

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223

Email: sales@prolineoptions.com

Email: techsupport@prolineoptions.com Web: https://www.prolineoptions.com