

E25GSFP28LR40-I-PRO

Intel[®] E25GSFP28LR40-I Compatible TAA Compliant 25GBase-ER SFP28 Transceiver (SMF, 1310nm, 40km, DOM, -40 to 85C, LC)

Features

- SFF-8432 and SFF-8472 Compliance
- Duplex LC Connector
- Industrial Temperature -40 to 85 Celsius
- Single-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications:

- 25GBase-ER Ethernet
- Access, Metro and Enterprise

Product Description

This Intel[®] E25GSFP28LR40-I compatible SFP28 transceiver provides 25GBase-ER throughput up to 40km over single-mode fiber (SMF) using a wavelength of 1310nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Intel[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.

Rev. 031924

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	TS	-40		85	°C	
Operating Case Temperature	Тс	-40	25	85	°C	
Operating Humidity	RH	5		95	%	
Receiver Power	Rmax			-4	dBm	
Data Rate			24.33 25.78		Gbps	
Bit Error Rate	BER			5×10 ⁻⁵		1
Supported Link Length on 9/125um SMF, 25.78Gb/s	L		40		km	2

- 1. Tested with a PRBS 2³¹-1 test pattern for 25.78Gb/s operation.
- 2. Distances are based on FC-PI-6 Rev. 3.1 and IEEE 802.3 standards.

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage		Vcc	3.135	3.30	3.465	V	
Power Supply	/ Current	lcc			545	mA	
Power Dissip	ation	PD			1800	mW	
Transmitter							
Differential data input swing		Vin,pp	180		700	mVp-p	
Input differential impedance		Zin		100		Ω	
TX_FAULT	Transmitter Fault	VOH	2.0		VCCHOST	V	
	Normal Operation	VOL	0		0.8	V	
TX_DISABLE	Transmitter Disable	VIH	2.0		VCCHOST	V	
	Transmitter Enable	VIL	0		0.8	V	
Receiver							
Differential data output swing		Vout, pp	300		850	mVp-p	1
Output differential impedance		Zo		100		Ω	
Data Output Rise Time, Fall Time		t _r , t _f	15			ps	2
RX_LOS	Loss of signal (LOS)	VOH	2.0		VCCHOST	V	3
	Normal Operation	VOL	0		0.8	V	3

- 1. Internally AC coupled but requires an external 100Ω differential load termination.
- 2. 20-80 %.
- 3. LOS is an open collector output. Should be pulled up with $4.7k\Omega$ on the host board.

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Launch Optical Power (average)	Pavg	0		+6	dBm	1
Extinction Ratio	ER	4.0			dB	
Center Wavelength Range	λc	1295		1310	nm	
Transmitter and Dispersion Penalty	TDP			2.7	dB	
Spectral Width	Δλ			1	nm	2
RIN20OMA (max)	RIN			-130	dB/Hz	
Optical Return Loss Tolerance	ORLT			20	dB	
Pout @TX-Disable Asserted	Poff			-30	dBm	
Transmitter eye mask definition		{0.31, 0.4, 0.45, 0.34, 0.38, 0.4}				
Hit ratio 5×10-5 hits per sample.						
Receiver						
Center Wavelength	λς	1295	1310	1325	nm	
Receiver Sensitivity(average)	RxSENS1			-21	dBm	3
Receiver Sensitivity (OMA)	RxSENS2			-19	dBm	3
Receiver Overload	POL	-4			dBm	
Optical Return Loss	ORL	26			dB	
LOS De-Assert	LOSD			-21	dBm	
LOS Assert	LOS _A	-35			dBm	
LOS Hysteresis		0.5			dB	

- 1. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations.
- 2. 20dB spectral width.
- 3. Measured @25.78Gbps, with PRBS 2^{31} -1 at 5×10^{-5} BER.

Pin Description						
PIN	Symbol	Name / Description	Notes			
1	VeeT	Transmitter Ground	1			
2	TX_Fault	Transmitter Fault (LVTTL-O) - High indicates a fault condition	2			
3	TX_Disable	Transmitter Disable (LVTTL-I) – High or open disables the transmitter	3			
4	SDA	Two wire serial interface Data Line (LVCMOS-I/O) (MOD-DEF2)	4			
5	SCL	Two wire serial interface Clock Line (LVCMOS-I/O) (MOD-DEF1)	4			
6	MOD_ABS	Module Absent (Output), connected to VeeT or VeeR in the module	5			
7	RSO	NA	6			
8	RX_LOS	Receiver Loss of Signal (LVTTL-O)	2			
9	RS1	NA	6			
10	VeeR	Receiver Ground	1			
11	VeeR	Receiver Ground	1			
12	RD-	Inverse Received Data out (CML-O)				
13	RD+	Received Data out (CML-O)				
14	VeeR	Receiver Ground	1			
15	VccR	Receiver Power - +3.3V				
16	VccT	Transmitter Power - +3.3 V				
17	VeeT	Transmitter Ground	1			
18	TD+	Transmitter Data In (CML-I)				
19	TD-	Inverse Transmitter Data In (CML-I)				
20	VeeT	Transmitter Ground	1			

- 1. The module signal grounds are isolated from the module case.
- 2. This is an open collector/drain output that on the host board requires a 4.7K Ω to 10K Ω pull-up resistor to VccHost.
- 3. This input is internally biased high with a $4.7K\Omega$ to $10K\Omega$ pull-up resistor to VccT.
- 4. Two-Wire Serial interface clock and data lines require an external pull-up resistor dependent on the capacitance load.
- 5. This is a ground return that on the host board requires a 4.7K Ω to 10K Ω pull-up resistor to VccHost.
- Rate select can also be set through the 2-wire bus in accordance with SFF-8472 v. 12.1, Rx Rate Select is set at Bit 3, Byte 110, Address A2h. Tx Rate Select is set at Bit 3, Byte 118, Address A2h.
 Note: writing a "1" selects maximum bandwidth operation. Rate select is the logic OR of the input state of Rate Select Pin and 2-wire bus.

Recommended Circuit Schematic

Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP Multi-Sourcing Agreement (MSA).

EEPROM Information

EEPROM memory map specific data field description is as below:

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223 Email: sales@prolineoptions.com Email: techsupport@prolineoptions.com Web: https://www.prolineoptions.com