

AOC-O-O-400G-XM-PRO

Arista Networks® Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, Up to 30m)

Features

- OSFP MSA compliant
- 8 parallel full-duplex channels
- Compliant to IEEE802.3bs
- Up to 100m OM3 MMF transmission
- Operating case temperature: 0°C to 70°C
- 8x53.125Gb/s electrical interface (400GAUI-8)
- Data Rate 53.125Gbps (PAM4) per channel
- Maximum power consumption 12W
- RoHS compliant

Applications

- 400G Ethernet
- Infiniband EDR

Product Description

This is an MSA and TAA compliant compatible 400GBase-AOC OSFP to OSFP active optical cable that operates over multi-mode fiber with a maximum reach up to 30.0m (98.4ft). At a wavelength of 850nm, it has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. This active optical cable is TAA (Trade Agreements Act) compliant, and is built to comply with MSA (Multi-Source Agreement) standards. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline Options' active optical cables are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. — made or designated country end products."

Order Information

Part Number	Description
AOC-O-0-400G-1M-PRO	Arista Networks® AOC-O-O-400G-1M Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, 1m)
AOC-O-0-400G-2M-PRO	Arista Networks® AOC-O-O-400G-2M Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, 2m)
AOC-O-0-400G-3M-PRO	Arista Networks® AOC-O-O-400G-3M Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, 3m)
AOC-O-0-400G-5M-PRO	Arista Networks® AOC-O-O-400G-5M Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, 5m)
AOC-O-0-400G-7M-PRO	Arista Networks® AOC-O-O-400G-7M Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, 7m)
AOC-O-0-400G-10M-PRO	Arista Networks® AOC-O-O-400G-10M Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, 10m)
AOC-O-0-400G-15M-PRO	Arista Networks® AOC-O-O-400G-15M Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, 15m)
AOC-O-0-400G-20M-PRO	Arista Networks® AOC-O-O-400G-20M Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, 20m)
AOC-O-O-400G-25M-PRO	Arista Networks® AOC-O-O-400G-25M Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, 25m)
AOC-O-0-400G-30M-PRO	Arista Networks® AOC-O-O-400G-30M Compatible TAA Compliant 400GBase-AOC OSFP Active Optical Cable (MMF, 850nm, 30m)

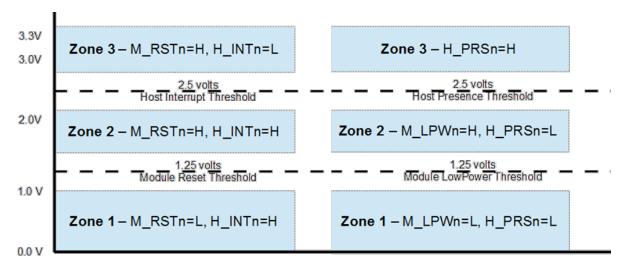
Absolute Maximum Ratings

Parameter	Symbol	Min	Тур.	Max.	Unit	Notes
Storage Temperature	TS	-40		85	degC	
Operating Case Temperature	ТОР	0		70	degC	
Power Supply Voltage	VCC	-0.5		3.6	V	
Relative Humidity (non- condensation)	RH	0		85	%	
Data Rate, each Lane			26.5625		GBd	PAM4
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio				1x10 ⁻¹²		1
Link Distance with OM3	D	0.5		100	m	2

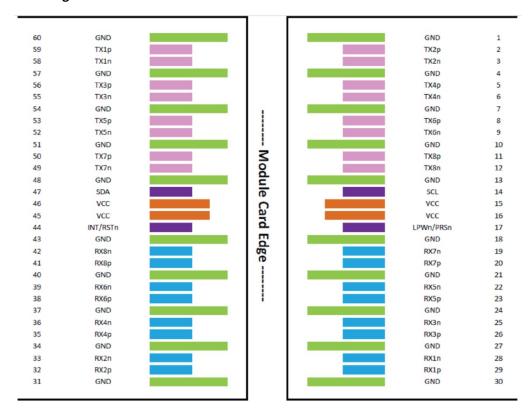
Notes:

- 1. FEC provided by host system.
- 2. FEC required on host system to support maximum distance.

Electrical Characteristics


Parameter	Test	Min.	Тур.	Max.	Unit.	Notes
	Point					
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Power Consumption				12	W	
Supply Current	Icc			3.63	А	
Transmitter (each Lane)						
Signaling Rate, each Lane	TP1	26.5625 ± 100 ppm			GBd	
Differential pk-pk Input Voltage Tolerance	TP1a	900			mVpp	1
Differential Termination Mismatch	TP1			10	%	
Differential Input Return Loss	TP1	IEEE 802.3-2015 Equation (83E- 5)			dB	
Differential to Common Mode Input Return Loss	TP1	IEEE 802.3-2015 Equation (83E- 6)			dB	
Module Stressed Input Test	TP1a	See IEEE 802.3bs 12	0E.3.4.1			2
Single-ended Voltage Tolerance Range (Min)	TP1a	-0.4 to 3.3			V	
DC Common Mode Input Voltage	TP1	-350		2850	mV	3
Receiver (each Lane)						
Signaling Rate, each lane	TP4	26.5625 ± 100 ppm			GBd	
Differential Peak-to-Peak Output Voltage	TP4			900	mVpp	
AC Common Mode Output Voltage, RMS	TP4			17.5	mV	
Differential Termination Mismatch	TP4			10	%	
Differential Output Return Loss	TP4	IEEE 802.3-2015 Equation (83E- 2)				
Common to Differential Mode Conversion Return Loss	TP4	IEEE 802.3-2015 Equation (83E- 3)				
Transition Time, 20% to 80%	TP4	9.5			ps	
Near-end Eye Symmetry Mask Width (ESMW)	TP4		0.265		UI	
Near-end Eye Height, Differential	TP4	70			mV	
Far-end Eye Symmetry Mask Width (ESMW)	TP4		0.2		UI	
Far-end Eye Height, Differential	TP4	30			mV	
Far-end Pre-cursor ISI Ratio	TP4	-4.5		2.5	%	
Common Mode Output Voltage (Vcm)	TP4	-350		2850	mV	3

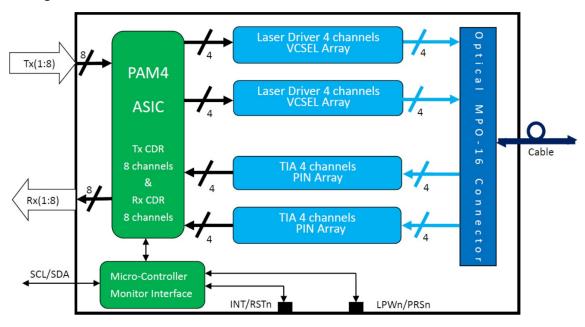
Notes:


- 1. With the exception to IEEE 802.3bs 120E.3.1.2 that the pattern is PRBS31Q or scrambled idle.
- 2. Meets BER specified in IEEE 802.3bs 120E.1.1.

3. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

Voltage Zones

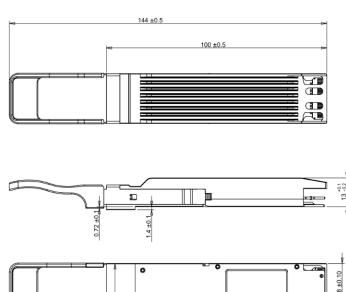
Electrical Pin-out Assignment



Pin Descriptions


Pin#	Symbol	Description	Logic	Direction	Plug Sequence
1	GND		Ground		1
2	TX2p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
3	TX2n	Transmitter Data Inverted	CML-I	Input from Host	3
4	GND		Ground		1
5	TX4p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
6	TX4n	Transmitter Data Inverted	CML-I	Input from Host	3
7	GND		Ground		1
8	TX6p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
9	TX6n	Transmitter Data Inverted	CML-I	Input from Host	3
10	GND		Ground		1
11	TX8p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
12	TX8n	Transmitter Data Inverted	CML-I	Input from Host	3
13	GND		Ground		1
14	SCL	2-wire Serial interface clock	LVCMOS-I/O	Bi-directional	3
15	VCC	+3.3V Power		Power from Host	2
16	VCC	+3.3V Power		Power from Host	2
17	LPWn/PRSn	Low-Power Mode / Module Present	Multi-Level	Bi-directional	3
18	GND		Ground		1
19	RX7n	Receiver Data Inverted	CML-O	Output to Host	3
20	RX7p	Receiver Data Non-Inverted	CML-O	Output to Host	3
21	GND		Ground		1
22	RX5n	Receiver Data Inverted	CML-O	Output to Host	3
23	RX5p	Receiver Data Non-Inverted	CML-O	Output to Host	3
24	GND		Ground		1
25	RX3n	Receiver Data Inverted	CML-O	Output to Host	3
26	RX3p	Receiver Data Non-Inverted	CML-O	Output to Host	3
27	GND		Ground		1
28	RX1n	Receiver Data Inverted	CML-O	Output to Host	3
29	RX1p	Receiver Data Non-Inverted	CML-O	Output to Host	3
30	GND		Ground		1
31	GND		Ground		1
32	RX2p	Receiver Data Non-Inverted	CML-O	Output to Host	3
33	RX2n	Receiver Data Inverted	CML-O	Output to Host	3
34	GND		Ground		1
35	RX4p	Receiver Data Non-Inverted	CML-O	Output to Host	3
36	RX4n	Receiver Data Inverted	CML-O	Output to Host	3
37	GND		Ground		1
38	RX6p	Receiver Data Non-Inverted	CML-O	Output to Host	3

Pin#	Symbol	Description	Logic	Direction	Plug Sequence
39	RX6n	Receiver Data Inverted	CML-O	Output to Host	3
40	GND		Ground		1
41	RX8p	Receiver Data Non-Inverted	CML-O	Output to Host	3
42	RX8n	Receiver Data Inverted	CML-O	Output to Host	3
43	GND		Ground		1
44	INT/RSTn	Module Interrupt / Module Reset	Multi-Level	Bi-directional	3
45	VCC	+3.3V Power		Power from Host	2
46	VCC	+3.3V Power		Power from Host	2
47	SDA	2-wire Serial interface data	LVCMOS-I/O	Bi-directional	3
48	GND		Ground		1
49	TX7n	Transmitter Data Inverted	CML-I	Input from Host	3
50	TX7p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
51	GND		Ground		1
52	TX5n	Transmitter Data Inverted	CML-I	Input from Host	3
53	TX5p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
54	GND		Ground		1
55	TX3n	Transmitter Data Inverted	CML-I	Input from Host	3
56	ТХ3р	Transmitter Data Non-Inverted	CML-I	Input from Host	3
57	GND		Ground		1
58	TX1n	Transmitter Data Inverted	CML-I	Input from Host	3
59	TX1p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
60	GND		Ground		1


AOC Block Diagram

Recommended Power Supply Filter

Mechanical Specifications

22.93 Max

About Us:

Proline Options is one of North America's leading providers of transceivers and high-speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223

Email: sales@prolineoptions.com

Email: techsupport@prolineoptions.com
Web: https://www.prolineoptions.com