4754XXA-80-I-A5-PRO
Alcatel-Lucent Nokia ${ }^{\circledR}$ 4754XXA-I-A5-80 Compatible TAA Compliant 10GBase-DWDM 50GHz SFP+ Transceiver (SMF, 1530 nm to $1565 \mathrm{~nm},-40$ to $85 \mathrm{C}, \mathrm{LC})$

Features

- SFF-8432 and SFF-8472 Compliance
- Duplex LC Connector
- Industrial Temperature -40 to 85 Celsius
- Single-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications:

- 10x Gigabit Ethernet over DWDM
- 8x/10x Fibre Channel
- Access, Metro and Enterprise

Product Description

This Alcatel-Lucent Nokia ${ }^{\circledR}$ 4754XXA-I-A5-80 compatible SFP+ transceiver provides 10GBase-DWDM throughput up to 80 km over single-mode fiber (SMF) using a wavelength of 1530 nm to 1565 nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Alcatel-Lucent Nokia ${ }^{\circledR}$ transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. \& 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. - made or designated country end products.

Regulatory Compliance

- ESD to the Electrical PINs: compatible with MIL-STD-883E Method 3015.4
- ESD to the LC Receptacle: compatible with IEC 61000-4-3
- EMI/EMC compatible with FCC Part 15 Subpart B Rules, EN55022:2010
- Laser Eye Safety compatible with FDA 21CFR, EN60950-1\& EN (IEC) 60825-1,2
- RoHS compliant with EU RoHS 2.0 directive 2015/863/EU

Tunable SFP+ Channel Number and Wavelength

Channel No.	Frequency (THz)	Center Wavelength (nm)	Channel No	Frequency (THz)	Center Wavelength (nm)
1	191.35	1566.72	49	193.75	1547.32
2	191.40	1566.31	50	193.80	1546.92
3	191.45	1565.90	51	193.85	1546.52
4	191.50	1565.50	52	193.90	1546.12
5	191.55	1565.09	53	193.95	1545.72
6	191.60	1564.68	54	194.00	1545.32
7	191.65	1564.27	55	194.05	1544.92
8	191.70	1563.86	56	194.10	1544.53
9	191.75	1563.45	57	194.15	1544.13
10	191.80	1563.05	58	194.20	1543.73
11	191.85	1562.64	59	194.25	1543.33
12	191.90	1562.23	60	194.30	1542.94
13	191.95	1561.83	61	194.35	1542.54
14	192.00	1561.42	62	194.40	1542.14
15	192.05	1561.01	63	194.45	1541.75
16	192.10	1560.61	64	194.50	1541.35
17	192.15	1560.20	65	194.55	1540.95
18	192.20	1559.79	66	194.60	1540.56
19	192.25	1559.39	67	194.65	1540.16
20	192.30	1558.98	68	194.70	1539.77
21	192.35	1558.58	69	194.75	1539.37
22	192.40	1558.17	70	194.80	1538.98
23	192.45	1557.77	71	194.85	1538.58
24	192.50	1557.36	72	194.90	1538.19
25	192.55	1556.96	73	194.95	1537.79
26	192.60	1556.56	74	195.00	1537.40
27	192.65	1556.15	75	195.05	1537.00
28	192.70	1555.75	76	195.10	1536.61
29	192.75	1555.34	77	195.15	1536.22
30	192.80	1554.94	78	195.20	1535.82
31	192.85	1554.54	79	195.25	1535.43
32	192.90	1554.13	80	195.30	1535.04
33	192.95	1553.73	81	195.35	1534.64
34	193.00	1553.33	82	195.40	1534.25
35	193.05	1552.93	83	195.45	1533.86
36	193.10	1552.52	84	195.50	1533.47
37	193.15	1552.12	85	195.55	1533.07

$\mathbf{3 8}$	193.20	1551.72	$\mathbf{8 6}$	195.60	1532.68
$\mathbf{3 9}$	193.25	1551.32	$\mathbf{8 7}$	195.65	1532.29
$\mathbf{4 0}$	193.30	1550.92	$\mathbf{8 8}$	195.70	1531.90
$\mathbf{4 1}$	193.35	1550.52	$\mathbf{8 9}$	195.75	1531.51
$\mathbf{4 2}$	193.40	1550.12	$\mathbf{9 0}$	195.80	1531.12
$\mathbf{4 3}$	193.45	1549.72	$\mathbf{9 1}$	195.85	1530.72
$\mathbf{4 4}$	193.50	1549.32	$\mathbf{9 2}$	195.90	1530.33
$\mathbf{4 5}$	193.55	1548.91	$\mathbf{9 3}$	195.95	1529.94
$\mathbf{4 6}$	193.60	1548.52	$\mathbf{9 4}$	196.00	1529.55
$\mathbf{4 7}$	193.65	1548.11	$\mathbf{9 5}$	196.05	$\mathbf{1 5 2 9 . 1 6}$
$\mathbf{4 8}$	193.70	1547.72	$\mathbf{9 6}$	$\mathbf{1 9 6 . 1 0}$	$\mathbf{1 5 2 8 . 7 7}$

Absolute Maximum Ratings

| Parameter | Symbol | Min. | Max. | Unit | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Maximum Supply Voltage | VccT | 0 | +3.6 | V | +3.3V |
| Optical Receiver Input | PIMAX | | +5 | dBm | Average |
| Operating Case Temperature | Tc | -40 | 85 | ${ }^{\circ} \mathrm{C}$ | |
| Storage Temperature | TSTR | -40 | 85 | ${ }^{\circ} \mathrm{C}$ | |
| ESD SFI pins | ESD1 | | 1 | kV | HBM |
| ESD except for SFI pins | ESD2 | | 2 | kV | HBM |

Electrical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Supply Voltage	Vcc	3.135	3.300	3.465	V	
Supply Current	Icc3			0.73	A	
Power Consumption	PDS			2.3	W	
Low Speed Control Pin Logic Levels						
Host Vcc Range	Host_Vcc	3.14		3.47	V	with $\pm 5 \%$ variation
TX_Fault, RX_LOS	VoL	0.0		0.4	V	Note 1
	VOH	2.0		Vcc+0.3	V	Note 1
TX_Disable	VIL	-0.3		0.8	V	Pulled up with 10k ohms to VccT in the module
	VIH	2.0		VccT +0.3	V	

Notes:

1. Rpullup (Rp) is the pull up resistor. Active bus termination may be used by the host in place of a pullup resistor. Pull ups can be connected to multiple power supplies, however the host board design shall ensure that no module pin has voltage exceeding module. Measures at the Host side of the connector.

Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Transmitter						
Data Rate		1.2		11.3	Gbit/s	NRZ
Frequency range		191.35		196.10	THz	50 GHz grid, 96 channels
Frequency accuracy		-2.5		+2.5	GHz	EOL
Optical transmit power	Po	-1.0		+3.0	dBm	EOL
Shuttered output power				-35	dBm	
Optical power stability	$\triangle \mathrm{Po}$	-1.0		+1.0	dB	All channels, SOL
Side mode suppression	SMSR	35			dB	$\pm 2.5 \mathrm{~nm}$, modulated
Spectral width	$\Delta \lambda$		0.3	0.5	nm	-20dB, modulated
Extinction ratio	ER	8.2			dB	Filtered, 10.3Gb/s
Eye diagram compliance		GR-253, ITU-T G. 691				
Mask margin		10			\%	
Tuning speed				10	s	warmed-up, from any CH to any other CH
Receiver						
Data Rate		1.2		11.3	Gbit/s	NRZ
Input operating wavelength		1525		1575	nm	
Minimum Receiver Sensitivity (Back to Back)	Prmin			-24	dBm	$\begin{aligned} & 10.3 \mathrm{~Gb} / \mathrm{s}, 1 \mathrm{E}-12, \\ & \text { OSNR>35dB } \end{aligned}$
Minimum Receiver Sensitivity (+1100ps/nm)				-23	dBm	
Minimum Receiver Sensitivity (-300 to $\mathbf{+ 1 4 0 0} \mathrm{ps} / \mathrm{nm}$)				-21	dBm	
Maximum input power (overload)	Pro	-7			dBm	
Receiver Reflectance	RL			-27	dB	
LOS Assert		-27.5			dBm	
LOS De-Assert	LOS ${ }_{\text {D }}$			-24	dBm	
LOS Hysteresis		0.1			dB	
LOS Assert Time				100	us	
LOS De-Assert Time				100	us	

Auto tuning

The autotuning process is a host independent scheme. When the TSFP+ modules with auto-tuning implemented are inserted into the corresponding electrical ports at a central office and a remote site, both modules will automatically start the automatic tuning process.
The process ensures that the TSFP+ modules tune to the channel defined by the DWDM filter (MUX/DeMUX) which both modules are connected to. The first module to converge on the correct channel initiates a unique process, which helps both sides of the link communicate properly.
After completion of the auto-tune process, both modules fix their wavelengths and move into normal 10Gbit/s operation. A LOS condition, a shutdown condition (Tx Disable) and a power cycle shall trigger a restart of the auto tuning process.
The TSFP+ module shall appear as a regular Tunable product to the host system once Auto-tune is completed.

Tuning Parameter

No.	Parameter	Min	Max	Unit	Description
$\mathbf{1}$	Channel to channel switch time during tuning		3.256	s	
$\mathbf{2}$	Tuning convergence time		340	s	Not including cold start
$\mathbf{3}$	Timeout (t1)	400		s	
$\mathbf{4}$	LOS timeout (t2)	15	16	s	
$\mathbf{5}$	Default channel	191.35	$\mathbf{T H z}$		
$\mathbf{6}$	Channel Sequence	191.35	THz	50GHz grid	
$\mathbf{7}$	Modulation rate	125	Baud/s	Manchester encoding	
$\mathbf{8}$	Bit rate	62.5	Bit/s		

SFP+ 2 Wire Interface Timing Requirements

Parameter	Symbol	Min	Max	Unit	Conditions
Clock Frequency	fSCL	100	400	kHz	
Clock Pulse Width Low	tLOW	1.3	-	$\mu \mathrm{s}$	
Clock Pulse Width High	tHIGH	0.6	-	$\mu \mathrm{s}$	
Time bus free before new transaction can start	tBUF	20	-	$\mu \mathrm{s}$	Between STOP and START
START Hold time	tHD,STA	0.6	-	$\mu \mathrm{s}$	
START Set-Up time	tSU,STA	0.6	-	$\mu \mathrm{s}$	
Data in Hold time	tHD, DAT	0	-	$\mu \mathrm{s}$	
Data in Set-Up time	tSU,DAT	0.1	-	$\mu \mathrm{s}$	
Input Rise time (100 kHz)	tR,100	-	1000	ns	Note 1
Input Rise time (400 kHz)	tR,400	-	300	ns	Note 1
Input Fall time (100 kHz)	tF,100	-	300	ns	Note 1
Input Fall time (400 kHz)	tF,400	-	300	ns	Note 1
STOP Set-Up time	tSU,STO	0.6	-	$\mu \mathrm{s}$	
Serial Interface Clock Holdoff "Clock Stretching"	T_clock_hold	-	500	$\mu \mathrm{s}$	Maximum time the SFP+ may hold the SCL line low before continuing R or W operation
Complete Single or Sequential Write	tWR	-	40	ms	Complete (up to) 8 Byte Write
Endurance (Write Cycles)		10 k	-	Cycles	@ Max Operating Temperature

Notes:

1. From (VIL, MAX -0.15) to $(\mathrm{VIH}, \mathrm{MIN}+0.15)$

SFP+ Timing Requirements

Parameter	Symbol	Min	Max	Unit	Conditions
Tx_Disable assert time	t_off		100	$\mu \mathrm{~s}$	Rising edge of TX_Disable to fall of output signal below 10\% of nominal.
TX_Disable negate time	T_on		2	ms	Falling edge of TX Disable to rise output sognal above 90\% of nominal. This only applies in normal operation, not during start up or fault recovery.
Time to initialize 2-wire interface	t_2w_start_u p		300	ms	From power on or hot plug after the supply meeting
Time to initialize cooled module and time to power up a cooled module to Power Level II	t_start_up_ cooled		90	sec	From power supplies meeting or hot plug, or Tx disable negated during power up or Tx_Fault
recovery, until cooled power level II part during					
fault recovery is fully operational. Also, from					
stop bit-low-to-high SDA transition enabling					
Power Level Il until cooled module is fully					
operational.					

Notes:

1. The maximum currents are the allowed currents for each power supply VccT ot VccR, therefore the total module peak currents can be twice this value. The instantaneous peak current is allowed to exceed the specified maximum current capacity of the connector contact for a short period.
2. Not to exceed the sustained peak limit for the more than $50 \mu \mathrm{~s}$; may exceed this limit for shorter durations.

Pin Descriptions

| Pin | Logic | Symbol | Power Sequence
 Order | Name/Descriptions |
| :--- | :--- | :--- | :--- | :--- | Ref.

Notes:

1. The module signal ground pins, VeeR and Veet, are isolated from the module case.
2. This pin is an open drain output pib and shall be pulled up with a $4.7 \mathrm{k}-10 \mathrm{kohms}$ to Host_Vcc on the host board. Pull ups can be connected to multiple power supplies, however the host board design shall ensure that no module pin has voltage exceeding module $\mathrm{VccT} / \mathrm{R}+0.5 \mathrm{~V}$.
3. This pin is an input pin with 10 kohms pull up to VccT in the module.
4. This pin shall be pulled up with $4.7 \mathrm{k}-10 \mathrm{kohhms}$ to Host_Vcc on the host board.
5. Vcct and VccR are tied together inside the module.

Pin-out of connector Block on Host board

Recommended Circuit Schematic

Mechanical Specifications

Small Form Factor Pluggable (SFP) transceivers are compatible with the dimensions defined by the SFP MultiSourcing Agreement (MSA).

EEPROM Information

EEPROM memory map specific data field description is as below:

About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.

Tel: 855.933.3223
Email: sales@prolineoptions.com
Email: techsupport@prolineoptions.com
Web: https://www.prolineoptions.com

