

### 40G-QSFP-LM4-PRO

Brocade<sup>®</sup> (Formerly) 40G-QSFP-LM4 Compatible TAA Compliant 40GBase-LX4 QSFP+ Transceiver (SMF, 1270nm to 1330nm, 2km, DOM, 0 to 70C, LC)

### Features

- SFF-8436 Compliance
- Duplex LC Connector
- Commercial Temperature 0 to 70 Celsius
- Multi-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free



Applications:

- 40GBase Ethernet
- Access and Enterprise

## **Product Description**

This Brocade<sup>®</sup> (Formerly) 40G-QSFP-LM4 compatible QSFP+ transceiver provides 40GBase-LX4 throughput up to 2km over single-mode fiber (SMF) using a wavelength of 1270nm to 1330nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Brocade<sup>®</sup> (Formerly) transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Proline's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products.



Rev. 030524

## **Absolute Maximum Ratings**

| Parameter                   | Symbol | Min. | Тур. | Max. | Unit |
|-----------------------------|--------|------|------|------|------|
| Storage Temperature         | TS     | -40  |      | 85   | °C   |
| Operating Temperature       | Тор    | 0    |      | 70   | °C   |
| Power Supply Voltage        | Vcc    | -0.5 |      | 3.6  | V    |
| Relative Humidity           | Rh     | 0    |      | 85   | %    |
| Damage Threshold, each Lane | THd    | 4.5  |      |      | dBm  |

# **Recommended Operating Conditions**

| Parameter                  | Symbol | Min.  | Тур.    | Max.  | Unit |
|----------------------------|--------|-------|---------|-------|------|
| Operating Case Temperature | ТОР    | 0     |         | 70    | °C   |
| Power Supply Voltage       | VCC    | 3.135 | 3.3     | 3.465 | V    |
| Data Rate, each Lane       |        |       | 10.3125 | 11.2  | Gb/s |
| Control Input Voltage High |        | 2     |         | Vcc   | V    |
| Control Input Voltage Low  |        | 0     |         | 0.8   | V    |
| Link Distance (OM3 MMF)    | D_MMF  |       |         | 150   | m    |
| Link Distance (SMF)        | D_SMF  |       |         | 2     | km   |

## **Electrical Characteristics**

| Parameter                                        | Symbol                                           | Min.           | Тур. | Max.              | Unit     | Notes                               |
|--------------------------------------------------|--------------------------------------------------|----------------|------|-------------------|----------|-------------------------------------|
| Power Consumption                                |                                                  |                |      | 3.5               | W        |                                     |
| Supply Current                                   | lcc                                              |                |      | 1.1               | А        |                                     |
| Transceiver Power-on Initialization Time         |                                                  |                |      | 2000              | ms       | 1                                   |
| Transmitter (each lane)                          | 1                                                |                | 1    |                   |          | 1                                   |
| Single-ended Input Voltage Tolerance<br>(Note 2) |                                                  | -0.3           |      | 4.0               | V        | Referred to<br>TP1 signal<br>common |
| AC Common mode Voltage Tolerance                 |                                                  | 15             |      |                   | mV       | RMS                                 |
| Differential Input Voltage Swing Threshold       |                                                  | 50             |      |                   | mVpp     | LOSA<br>Threshold                   |
| Differential Input Voltage Swing                 | Vin,pp                                           | 190            |      | 700               | mVpp     |                                     |
| Differential Input Impedance                     | Zin                                              | 90             | 100  | 110               | Ohm      |                                     |
| Differential Input Return Loss                   | See IEEE 802                                     | 2.3ba 86A.4.11 | L    |                   | dB       | 10MHz-<br>11.1GHz                   |
| J2 Jitter Tolerance                              | Jt2                                              | 0.17           |      |                   | UI       |                                     |
| J9 Jitter Tolerance                              | Jt9                                              | 0.29           |      |                   | UI       |                                     |
| Data Dependent Pulse Width Shrinkage             | DDPWS                                            | 0.07           |      |                   | UI       |                                     |
| Eye Mask Coordinates {X1, X2, Y1, Y2}            | 0.11, 0.31<br>95, 350                            |                |      |                   | UI<br>mV | Hit Ratio =<br>5x10 <sup>-5</sup>   |
| Receiver (each lane)                             |                                                  |                |      |                   |          |                                     |
| Single-ended Output Voltage                      |                                                  | -0.3           |      | 4.0               | V        | Referred to<br>signal<br>common     |
| AC Common Mode Output Voltage                    |                                                  |                |      | 7.5               | mV       | RMS                                 |
| Differential Output Voltage Swing                | Vout,pp                                          | 300            |      | 850               | mVpp     |                                     |
| Differential Output Impedance                    | Zout                                             | 90             | 100  | 110               | Ohm      |                                     |
| Termination Mismatch at 1MHz                     |                                                  |                |      | 5                 | %        |                                     |
| Differential Output Return Loss                  | al Output Return Loss See IEEE 802.3ba 86A.4.2.1 |                |      |                   |          | 10MHz-<br>11.1GHz                   |
| Common-mode Output Return Loss                   | See IEEE 802                                     | 2.3ba 86A.4.2. | dB   | 10MHz-<br>11.1GHz |          |                                     |
| Output Transition Time                           |                                                  | 28             |      |                   | ps       | 20% to 80%                          |
| J2 Jitter Output                                 | Jo2                                              |                |      | 0.42              | UI       |                                     |
| J9 Jitter Output                                 | Jo9                                              |                |      | 0.65              | UI       |                                     |
| Eye Mask Coordinates {X1, X2, Y1, Y2}            | 0.29, 0.5<br>150, 425                            |                |      |                   | UI<br>mV | Hit Ratio =<br>5x10 <sup>-5</sup>   |

### Notes:

1. Power-on initialization time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.

2. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

# **Optical Characteristics**


| Parameter                                                                           | Symbol                 | Min.                  | Тур. | Max.   | Unit  | Notes              |
|-------------------------------------------------------------------------------------|------------------------|-----------------------|------|--------|-------|--------------------|
| Wavelength                                                                          | LO                     | 1264.5                | 1271 | 1277.5 | nm    |                    |
| C C                                                                                 | L1                     | 1284.5                | 1291 | 1297.5 | nm    |                    |
|                                                                                     | L2                     | 1304.5                | 1311 | 1317.5 | nm    |                    |
|                                                                                     | L3                     | 1324.5                | 1331 | 1337.5 | nm    |                    |
| Transmitter                                                                         |                        |                       |      |        |       |                    |
| Total Average Launch Power (for<br>SMF)                                             | P <sub>T</sub> , SMF   |                       |      | 8.3    | dBm   |                    |
| Total Average Launch Power (for<br>MMF)                                             | P <sub>T</sub> , MMF   |                       |      | 9.5    | dBm   |                    |
| Average Launch Power, each Lane<br>(for SMF)                                        | P <sub>AVG</sub> , SMF | -7.0                  |      | 2.3    | dBm   |                    |
| Average Launch Power, each Lane<br>(for MMF)                                        | P <sub>AVG</sub> , MMF | -5.0                  |      | 3.5    | dBm   |                    |
| OMA, each Lane (for SMF)                                                            | P <sub>OMA</sub> , SMF | -6.0                  |      | 3.5    | dBm   | 1                  |
| OMA, each Lane (for MMF)                                                            | P <sub>OMA</sub> , MMF | -4.0                  |      | 4.5    | dBm   |                    |
| Difference in Launch Power<br>between any Two Lanes (OMA)                           | Ptx,diff               |                       |      | 6.5    | dB    |                    |
| Launch Power in OMA minus<br>Transmitter and Dispersion<br>Penalty (TDP), each Lane |                        | -6.8                  |      |        | dBm   |                    |
| TDP, each Lane                                                                      | TDP                    |                       |      | 2.6    | dB    |                    |
| Extinction Ratio                                                                    | ER                     | 3.5                   |      |        | dB    |                    |
| Relative Intensity Noise                                                            | RIN                    |                       |      | -128   | dB/Hz | 12dB<br>reflection |
| Transmitter Reflectance                                                             | R <sub>T</sub>         |                       |      | -12    | dB    |                    |
| Transmitter Eye Mask Definition<br>{X1, X2, X3, Y1, Y2, Y3}                         | {0.23, 0.34, 0         | .43, 0.27, 0.35, 0.4} |      |        |       |                    |
| Average Launch Power OFF<br>Transmitter, each Lane                                  | Poff                   |                       |      | -30    | dBm   |                    |
| Receiver                                                                            |                        |                       |      |        |       |                    |
| Damage Threshold, each Lane                                                         | TH <sub>d</sub>        | 4.5                   |      |        | dBm   | 2                  |
| Total Average Receive Power (for<br>SMF)                                            |                        |                       |      | 8.3    | dBm   |                    |
| Total Average Receive Power (for MMF)                                               |                        |                       |      | 9.5    | dBm   |                    |
| Average Receive Power, each<br>Lane (for SMF)                                       |                        | -11.7                 |      | 2.3    | dBm   |                    |
| Average Receive Power, each Lane<br>(for MMF)                                       |                        | -7.0                  |      | 3.5    | dBm   |                    |
| Receiver Reflectance                                                                | R <sub>R</sub>         |                       |      | -26    | dB    |                    |

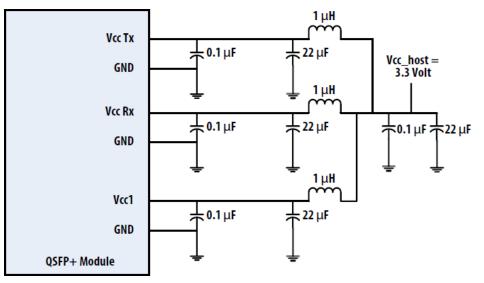
| Receive Power (OMA), each Lane<br>(for SMF)                   |                    |     | 3.5   | dBm |  |
|---------------------------------------------------------------|--------------------|-----|-------|-----|--|
| Receive Power (OMA), each Lane<br>(for MMF)                   |                    |     | 4.5   | dBm |  |
| Receiver Sensitivity (OMA), each<br>Lane (for SMF)            | SEN <sub>SMF</sub> |     | -11.5 | dBm |  |
| Receiver Sensitivity (OMA), each<br>Lane (for MMF)            | SEN <sub>MMF</sub> |     | -10.5 | dBm |  |
| Difference in Receive Power<br>between any Two Lanes (OMA)    | Prx,diff           |     | 7.5   | dB  |  |
| LOS Assert                                                    | LOSA               | -28 |       | dBm |  |
| LOS Deassert                                                  | LOSD               |     | -15   | dBm |  |
| LOS Hysteresis                                                | LOSH               | 0.5 |       | dB  |  |
| Receiver Electrical 3 dB upper<br>Cutoff Frequency, each Lane | Fc                 |     | 12.3  | GHz |  |

#### Notes:

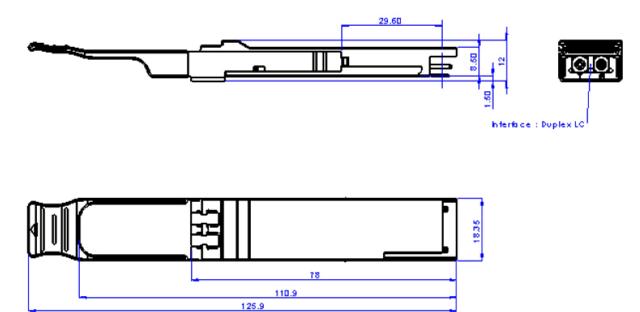
- 1. Even if the TDP < 0.8 dB, the OMA min must exceed the minimum value specified here.
- 2. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

#### **Electrical Pin-out Details**




Top Side Viewed from Top Bottom Side Viewed from Bottom

| Pin | Logic      | Symbol  | Name/Descriptions                                  | Ref. |
|-----|------------|---------|----------------------------------------------------|------|
| 1   |            | GND     | Module Ground                                      | 1    |
| 2   | CML-I      | Tx2-    | Transmitter inverted data input                    |      |
| 3   | CML-I      | Tx2+    | Transmitter non-inverted data input                |      |
| 4   |            | GND     | Module Ground                                      | 1    |
| 5   | CML-I      | Tx4-    | Transmitter inverted data input                    |      |
| 6   | CML-I      | Tx4+    | Transmitter non-inverted data input                |      |
| 7   |            | GND     | Module Ground                                      | 1    |
| 8   | LVTTL-I    | MODSEIL | Module Select                                      | 2    |
| 9   | LVTTL-I    | ResetL  | Module Reset                                       | 2    |
| 10  |            | VCCRx   | +3.3v Receiver Power Supply                        |      |
| 11  | LVCMOS-I   | SCL     | 2-wire Serial interface clock                      | 2    |
| 12  | LVCMOS-I/O | SDA     | 2-wire Serial interface data                       | 2    |
| 13  |            | GND     | Module Ground                                      | 1    |
| 14  | CML-O      | RX3+    | Receiver non-inverted data output                  |      |
| 15  | CML-O      | RX3-    | Receiver inverted data output                      |      |
| 16  |            | GND     | Module Ground                                      | 1    |
| 17  | CML-O      | RX1+    | Receiver non-inverted data output                  |      |
| 18  | CML-O      | RX1-    | Receiver inverted data output                      |      |
| 19  |            | GND     | Module Ground                                      | 1    |
| 20  |            | GND     | Module Ground                                      | 1    |
| 21  | CML-O      | RX2-    | Receiver inverted data output                      |      |
| 22  | CML-O      | RX2+    | Receiver non-inverted data output                  |      |
| 23  |            | GND     | Module Ground                                      | 1    |
| 24  | CML-O      | RX4-    | Receiver inverted data output                      |      |
| 25  | CML-O      | RX4+    | Receiver non-inverted data output                  |      |
| 26  |            | GND     | Module Ground                                      | 1    |
| 27  | LVTTL-O    | ModPrsL | Module Present, internal pulled down to GND        |      |
| 28  | LVTTL-O    | IntL    | Interrupt output should be pulled up on host board | 2    |
| 29  |            | VCCTx   | +3.3v Transmitter Power Supply                     |      |
| 30  |            | VCC1    | +3.3v Power Supply                                 |      |
| 31  | LVTTL-I    | LPMode  | Low Power Mode                                     | 2    |
| 32  |            | GND     | Module Ground                                      | 1    |
| 33  | CML-I      | Tx3+    | Transmitter non-inverted data input                |      |
| 34  | CML-I      | Tx3-    | Transmitter inverted data input                    |      |
| 35  |            | GND     | Module Ground                                      | 1    |
| 36  | CML-I      | Tx1+    | Transmitter non-inverted data input                |      |
| 37  | CML-I      | Tx1-    | Transmitter inverted data input                    |      |
| 38  |            | GND     | Module Ground                                      | 1    |


## Notes:

- 1. Module circuit ground is isolated from module chassis ground with in the module.
- 2. Open collector; should be pulled up with 4.7k-10k ohms on host board to a voltage between 3.15V and 3.6V.

## Recommended Power Supply Filter



## **Mechanical Specifications**



## About Us:

Proline Options is one of North America's leading providers of transceivers and high speed cabling. With a reputation for quality, tested products that cover the connectivity spectrum, Proline Options has a solution for you regardless of the specification.

At Proline Options, every product is tested in its intended application - never batch or spec tested only. We run bandwidth, distance and IOS network tests. We have documented an impressive 0.03% failure rate over the last 10 years. To continue this rate of success we invest millions annually in our own on-site testing lab.



Tel: 855.933.3223 Email: sales@prolineoptions.com Email: techsupport@prolineoptions.com Web: https://www.prolineoptions.com